skip to main content


This content will become publicly available on June 11, 2025

Title: Unsupervised Contrastive Learning for Robust RF Device Fingerprint Under Time-Domain Shift
Radio Frequency (RF) device fingerprinting has been recognized as a potential technology for enabling automated wireless device identification and classification. However, it faces a key challenge due to the domain shift that could arise from variations in the channel conditions and environmental settings, potentially degrading the accuracy of RF-based device classification when testing and training data is collected in different domains. This paper introduces a novel solution that leverages contrastive learning to mitigate this domain shift problem. Contrastive learning, a state-of-the-art self-supervised learning approach from deep learning, learns a distance metric such that positive pairs are closer (i.e. more similar) in the learned metric space than negative pairs. When applied to RF fingerprinting, our model treats RF signals from the same transmission as positive pairs and those from different transmissions as negative pairs. Through experiments on wireless and wired RF datasets collected over several days, we demonstrate that our contrastive learning approach captures domain-invariant features, diminishing the effects of domain-specific variations. Our results show large and consistent improvements in accuracy (10.8% to 27.8%) over baseline models, thus underscoring the effectiveness of contrastive learning in improving device classification under domain shift.  more » « less
Award ID(s):
2003273
NSF-PAR ID:
10512357
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE International Conference on Communications
Subject(s) / Keyword(s):
Domain adaptation, device classification, deep neural networks, contrastive learning, RF fingerprinting.
Format(s):
Medium: X
Location:
Denver, CO
Sponsoring Org:
National Science Foundation
More Like this
  1. The accurate identification of wireless devices is critical for enabling automated network access monitoring and authenticated data communication in large-scale networks; e.g., IoT networks. RF fingerprinting has emerged as a potential solution for device identification by leveraging the transmitter unique manufacturing impairments of the RF components. Although deep learning is proven efficient in classifying devices based on the hardware impairments, trained models perform poorly due to channel variations. That is, although training and testing neural networks using data generated during the same period achieve reliable classification, testing them on data generated at different times degrades the accuracy substantially. To the best of our knowledge, we are the first to propose to leverage MIMO capabilities to mitigate the channel effect and provide a channelresilient device classification. For the proposed technique we show that, for Rayleigh channels, blind partial channel estimation enabled by MIMO increases the testing accuracy by up to 40% when the models are trained and tested over the same channel, and by up to 60% when the models are tested on a channel that is different from that used for training. 
    more » « less
  2. Deep learning-based device fingerprinting has recently been recognized as a key enabler for automated network access authentication. Its robustness to impersonation attacks due to the inherent difficulty of replicating physical features is what distinguishes it from conventional cryptographic solutions. Although device fingerprinting has shown promising performances, its sensitivity to changes in the network operating environment still poses a major limitation. This paper presents an experimental framework that aims to study and overcome the sensitivity of LoRa-enabled device fingerprinting to such changes. We first begin by describing RF datasets we collected using our LoRa-enabled wireless device testbed. We then propose a new fingerprinting technique that exploits out-of-band distortion information caused by hardware impairments to increase the fingerprinting accuracy. Finally, we experimentally study and analyze the sensitivity of LoRa RF fingerprinting to various network setting changes. Our results show that fingerprinting does relatively well when the learning models are trained and tested under the same settings. However, when trained and tested under different settings, these models exhibit moderate sensitivity to channel condition changes and severe sensitivity to protocol configuration and receiver hardware changes when IQ data is used as input. However, with FFT data is used as input, they perform poorly under any change. 
    more » « less
  3. null (Ed.)
    Wireless device classification techniques play a vital role in supporting spectrum awareness applications, such as spectrum access policy enforcement and unauthorized network access monitoring. Recent works proposed to exploit distortions in the transmitted signals caused by hardware impairments of the devices to provide device identification and classification using deep learning. As technology advances, the manufacturing impairment variations among devices become extremely insignificant, and hence the need for more sophisticated device classification techniques becomes inescapable. This paper proposes a scalable, RF data-driven deep learning-based device classification technique that efficiently classifies transmitting radios from a large pool of bit-similar, high-end, high-performance devices with same hardware, protocol, and/or software configurations. Unlike existing techniques, the novelty of the proposed approach lies in exploiting both the in-band and out-of-band distortion information, caused by inherent hardware impairments, to enable scalable and accurate device classification. Using convolutional neural network (CNN) model for classification, our results show that the proposed technique substantially outperforms conventional approaches in terms of both classification accuracy and learning times. In our experiments, the testing accuracy obtained under the proposed technique is about 96% whereas that obtained under the conventional approach is only about 50% when the devices exhibit very similar hardware impairments. The proposed technique can be implemented with minimum receiver design tuning, as radio technologies, such as cognitive radios, can easily allow for both in-band and out-of band sampling. 
    more » « less
  4. Unsupervised learning has recently made exceptional progress because of the development of more effective contrastive learning methods. However, CNNs are prone to depend on low-level features that humans deem non-semantic. This dependency has been conjectured to induce a lack of robustness to image perturbations or domain shift. In this paper, we show that by generating carefully designed negative samples, contrastive learning can learn more robust representations with less dependence on such features. Contrastive learning utilizes positive pairs which preserve semantic information while perturbing superficial features in the training images. Similarly, we propose to generate negative samples in a reversed way, where only the superfluous instead of the semantic features are preserved. We develop two methods, texture-based and patch-based augmentations, to generate negative samples. These samples achieve better generalization, especially under out-of-domain settings. We also analyze our method and the generated texture-based samples, showing that texture features are indispensable in classifying particular ImageNet classes and especially finer classes. We also show that the model bias between texture and shape features favors them differently under different test settings. 
    more » « less
  5. null (Ed.)
    Most prior works on deep learning-based wireless device classification using radio frequency (RF) data apply off-the-shelf deep neural network (DNN) models, which were matured mainly for domains like vision and language. However, wireless RF data possesses unique characteristics that differentiate it from these other domains. For instance, RF data encompasses intermingled time and frequency features that are dictated by the underlying hardware and protocol configurations. In addition, wireless RF communication signals exhibit cyclostationarity due to repeated patterns (PHY pilots, frame prefixes, and so on) that these signals inherently contain. In this article, we begin by explaining and showing the unsuitability as well as limitations of existing DNN feature design approaches currently proposed to be used for wireless device classification. We then present novel feature design approaches that exploit the distinct structures of RF communication signals and the spectrum emissions caused by transmitter hardware impairments to custom-make DNN models suitable for classifying wireless devices using RF signal data. Our proposed DNN feature designs substantially improve classification robustness in terms of scalability, accuracy, signature anti-cloning, and insensitivity to environment perturbations. We end the article by presenting other feature design strategies that have great potential for providing further performance improvements of the DNN-based wireless device classification, and discuss the open research challenges related to these proposed strategies. 
    more » « less