Abstract Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. This work introduces a novel approach called physics-informed neural network with sparse regression to discover governing partial differential equations from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this discovery approach seamlessly integrates the strengths of deep neural networks for rich representation learning, physics embedding, automatic differentiation and sparse regression to approximate the solution of system variables, compute essential derivatives, as well as identify the key derivative terms and parameters that form the structure and explicit expression of the equations. The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of partial differential equation systems with different levels of data scarcity and noise accounting for different initial/boundary conditions. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.
more »
« less
This content will become publicly available on July 30, 2025
On sparse regression, L p ‐regularization, and automated model discovery
Sparse regression and feature extraction are the cornerstones of knowledge discovery from massive data. Their goal is to discover interpretable and predictive models that provide simple relationships among scientific variables. While the statistical tools for model discovery are well established in the context of linear regression, their generalization to nonlinear regression in material modeling is highly problem‐specific and insufficiently understood. Here we explore the potential of neural networks for automatic model discovery and induce sparsity by a hybrid approach that combines two strategies: regularization and physical constraints. We integrate the concept of Lp regularization for subset selection with constitutive neural networks that leverage our domain knowledge in kinematics and thermodynamics. We train our networks with both, synthetic and real data, and perform several thousand discovery runs to infer common guidelines and trends: L2 regularization or ridge regression is unsuitable for model discovery; L1 regularization or lasso promotes sparsity, but induces strong bias that may aggressively change the results; only L0 regularization allows us to transparently fine‐tune the trade‐off between interpretability and predictability, simplicity and accuracy, and bias and variance. With these insights, we demonstrate that Lp regularized constitutive neural networks can simultaneously discover both, interpretable models and physically meaningful parameters. We anticipate that our findings will generalize to alternative discovery techniques such as sparse and symbolic regression, and to other domains such as biology, chemistry, or medicine. Our ability to automatically discover material models from data could have tremendous applications in generative material design and open new opportunities to manipulate matter, alter properties of existing materials, and discover new materials with user‐defined properties.
more »
« less
- Award ID(s):
- 2320933
- PAR ID:
- 10512698
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Engineering
- Volume:
- 125
- Issue:
- 14
- ISSN:
- 0029-5981
- Page Range / eLocation ID:
- e7481
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Alber, Mark (Ed.)Biological systems exhibit complex dynamics that differential equations can often adeptly represent. Ordinary differential equation models are widespread; until recently their construction has required extensive prior knowledge of the system. Machine learning methods offer alternative means of model construction: differential equation models can be learnt from data via model discovery using sparse identification of nonlinear dynamics (SINDy). However, SINDy struggles with realistic levels of biological noise and is limited in its ability to incorporate prior knowledge of the system. We propose a data-driven framework for model discovery and model selection using hybrid dynamical systems: partial models containing missing terms. Neural networks are used to approximate the unknown dynamics of a system, enabling the denoising of the data while simultaneously learning the latent dynamics. Simulations from the fitted neural network are then used to infer models using sparse regression. We show, via model selection, that model discovery using hybrid dynamical systems outperforms alternative approaches. We find it possible to infer models correctly up to high levels of biological noise of different types. We demonstrate the potential to learn models from sparse, noisy data in application to a canonical cell state transition using data derived from single-cell transcriptomics. Overall, this approach provides a practical framework for model discovery in biology in cases where data are noisy and sparse, of particular utility when the underlying biological mechanisms are partially but incompletely known.more » « less
-
The ability to concisely describe the dynamical behavior of soft materials through closed-form constitutive relations holds the key to accelerated and informed design of materials and processes. The conventional approach is to construct constitutive relations through simplifying assumptions and approximating the time- and rate-dependent stress response of a complex fluid to an imposed deformation. While traditional frameworks have been foundational to our current understanding of soft materials, they often face a twofold existential limitation: i) Constructed on ideal and generalized assumptions, precise recovery of material-specific details is usually serendipitous, if possible, and ii) inherent biases that are involved by making those assumptions commonly come at the cost of new physical insight. This work introduces an approach by leveraging recent advances in scientific machine learning methodologies to discover the governing constitutive equation from experimental data for complex fluids. Our rheology-informed neural network framework is found capable of learning the hidden rheology of a complex fluid through a limited number of experiments. This is followed by construction of an unbiased material-specific constitutive relation that accurately describes a wide range of bulk dynamical behavior of the material. While extremely efficient in closed-form model discovery for a real-world complex system, the model also provides insight into the underpinning physics of the material.more » « less
-
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime, where the networks' biases are initialized to some constant rather than zero. We prove that under such initialization, the neural network will have sparse activation throughout the entire training process, which enables fast training procedures via some sophisticated computational methods. With such initialization, we show that the neural networks possess a different limiting kernel which we call bias-generalized NTK, and we study various properties of the neural networks with this new kernel. We first characterize the gradient descent dynamics. In particular, we show that the network in this case can achieve as fast convergence as the dense network, as opposed to the previous work suggesting that the sparse networks converge slower. In addition, our result improves the previous required width to ensure convergence. Secondly, we study the networks' generalization: we show a width-sparsity dependence, which yields a sparsity-dependent Rademacher complexity and generalization bound. To our knowledge, this is the first sparsity-dependent generalization result via Rademacher complexity. Lastly, we study the smallest eigenvalue of this new kernel. We identify a data-dependent region where we can derive a much sharper lower bound on the NTK's smallest eigenvalue than the worst-case bound previously known. This can lead to improvement in the generalization bound.more » « less
-
Farhat, C (Ed.)Abstract We present a machine learning framework capable of consistently inferring mathematical expressions of hyperelastic energy functionals for incompressible materials from sparse experimental data and physical laws. To achieve this goal, we propose a polyconvex neural additive model (PNAM) that enables us to express the hyperelastic model in a learnable feature space while enforcing polyconvexity. An upshot of this feature space obtained via the PNAM is that (1) it is spanned by a set of univariate basis functions that can be re‐parametrized with a more complex mathematical form, and (2) the resultant elasticity model is guaranteed to fulfill the polyconvexity, which ensures that the acoustic tensor remains elliptic for any deformation. To further improve the interpretability, we use genetic programming to convert each univariate basis into a compact mathematical expression. The resultant multi‐variable mathematical models obtained from this proposed framework are not only more interpretable but are also proven to fulfill physical laws. By controlling the compactness of the learned symbolic form, the machine learning‐generated mathematical model also requires fewer arithmetic operations than its deep neural network counterparts during deployment. This latter attribute is crucial for scaling large‐scale simulations where the constitutive responses of every integration point must be updated within each incremental time step. We compare our proposed model discovery framework against other state‐of‐the‐art alternatives to assess the robustness and efficiency of the training algorithms and examine the trade‐off between interpretability, accuracy, and precision of the learned symbolic hyperelastic models obtained from different approaches. Our numerical results suggest that our approach extrapolates well outside the training data regime due to the precise incorporation of physics‐based knowledge.more » « less