Abstract Mixtures of Ce‐doped rare‐earth aluminum perovskites are drawing a significant amount of attention as potential scintillating devices. However, the synthesis of complex perovskite systems leads to many challenges. Designing the A‐site cations with an equiatomic ratio allows for the stabilization of a single‐crystal phase driven by an entropic regime. This work describes the synthesis of a highly epitaxial thin film of configurationally disordered rare‐earth aluminum perovskite oxide (La0.2Lu0.2Y0.2Gd0.2Ce0.2)AlO3and characterizes the structural and optical properties. The thin films exhibit three equivalent epitaxial domains having an orthorhombic structure resulting from monoclinic distortion of the perovskite cubic cell. An excitation of 286.5 nm from Gd3+and energy transfer to Ce3+with 405 nm emission are observed, which represents the potential for high‐energy conversion. These experimental results also offer the pathway to tunable optical properties of high‐entropy rare‐earth epitaxial perovskite films for a range of applications.
more »
« less
This content will become publicly available on December 1, 2025
Structural degeneracy and formation of crystallographic domains in epitaxial LaFeO3 films revealed by machine-learning assisted 4D-STEM
Abstract Structural domains and domain walls, inherent in single crystalline perovskite oxides, can significantly influence the properties of the material and therefore must be considered as a vital part of the design of the epitaxial oxide thin films. We employ 4D-STEM combined with machine learning (ML) to comprehensively characterize domain structures at both high spatial resolution and over a significant spatial extent. Using orthorhombic LaFeO3as a model system, we explore the application of unsupervised and supervised ML in domain mapping, which demonstrates robustness against experiment uncertainties. The results reveal the consequential formation of multiple domains due to the structural degeneracy when LaFeO3film is grown on cubic SrTiO3. In situ annealing of the film shows the mechanism of domain coarsening that potentially links to phase transition of LaFeO3at high temperatures. Moreover, synthesis of LaFeO3on DyScO3illustrates that a less symmetric orthorhombic substrate inhibits the formation of domain walls, thereby contributing to the mitigation of structural degeneracy. High fidelity of our approach also highlights the potential for the domain mapping of other complicated materials and thin films.
more »
« less
- Award ID(s):
- 2011876
- PAR ID:
- 10513023
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Page Range / eLocation ID:
- 4198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO3. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO3thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO6octahedra at the APB that bridges the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO6octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains.more » « less
-
Abstract Ferroelectric domain walls, topological entities separating domains of uniform polarization, are promising candidates as active elements for nanoscale memories. In such applications, controlled nucleation and stabilization of domain walls are critical. Here, using in situ transmission electron microscopy and phase‐field simulations, a controlled nucleation of vertically oriented 109° domain walls in (110)‐oriented BiFeO3(BFO) thin films is reported. In the switching experiment, reversed domains that are nucleated preferentially at the nanoscale edges of the “crest and sag” pattern‐like electrode under external bias subsequently grow into a stable stripe configuration. In addition, when triangular pockets (with an in‐plane polarization component) are present, these domain walls are pinned to form stable flux‐closure domains. Phase field simulations show that i) field enhancement at the edges of the electrode causes site‐specific domain nucleation, and ii) the local electrostatics at the domain walls drives the formation of flux closure domains, thus stabilizing the striped pattern, irrespective of the initial configuration. The results demonstrate how flux closure pinning can be exploited in conjunction with electrode patterning and substrate orientation to achieve a desired topological defect configuration. These insights constitute critical advancements in exploiting domain walls in next generation ferroelectronic devices.more » « less
-
We report direct imaging of boundary magnetization associated with antiferromagnetic domains in magnetoelectric epitaxial Cr 2 O 3 thin films using diamond nitrogen vacancy microscopy. We found a correlation between magnetic domain size and structural grain size which we associate with the domain formation process. We performed field cooling, i.e. , cooling from above to below the Néel temperature in the presence of a magnetic field, which resulted in the selection of one of the two otherwise degenerate 180° domains. Lifting of such a degeneracy is achievable with a magnetic field alone due to the Zeeman energy of a weak parasitic magnetic moment in Cr 2 O 3 films that originates from defects and the imbalance of the boundary magnetization of opposing interfaces. This boundary magnetization couples to the antiferromagnetic order parameter enabling selection of its orientation. Nanostructuring the Cr 2 O 3 film with mesa structures revealed reversible edge magnetic states with the direction of magnetic field during field cooling.more » « less
-
Abstract Temperature‐ and electric‐field‐induced structural transitions in a polydomain ferroelectric can have profound effects on its electrothermal susceptibilities. Here, the role of such ferroelastic domains on the pyroelectric and electrocaloric response is experimentally investigated in thin films of the tetragonal ferroelectric PbZr0.2Ti0.8O3. By utilizing epitaxial strain, a rich set of ferroelastic polydomain states spanning a broad thermodynamic phase space are stabilized. Using temperature‐dependent scanning‐probe microscopy, X‐ray diffraction, and high‐frequency phase‐sensitive pyroelectric measurements, the propensity of domains to reconfigure under a temperature perturbation is quantitatively studied. In turn, the “extrinsic” contributions to pyroelectricity exclusively due to changes between the ferroelastic domain population is elucidated as a function of epitaxial strain. Further, using highly sensitive thin‐film resistive thermometry, direct electrocaloric temperature changes are measured on these polydomain thin films for the first time. The results demonstrate that temperature‐ and electric‐field‐driven domain interconversion under compressive strain diminish both the pyroelectric and the electrocaloric effects, while both these susceptibilities are enhanced due to the exact‐opposite effect from the extrinsic contributions under tensile strain.more » « less