skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rotation of a fibre in simple shear flow of a dilute polymer solution
The motion of a freely rotating prolate spheroid in a simple shear flow of a dilute polymeric solution is examined in the limit of large particle aspect ratio,$$\kappa$$. A regular perturbation expansion in the polymer concentration,$$c$$, a generalized reciprocal theorem, and slender body theory to represent the velocity field of a Newtonian fluid around the spheroid are used to obtain the$$O(c)$$correction to the particle's orientational dynamics. The resulting dynamical system predicts a range of orientational behaviours qualitatively dependent upon$$c\, De$$($$De$$is the imposed shear rate times the polymer relaxation time) and$$\kappa$$and quantitatively on$$c$$. At a small but finite$$c\, De$$, the particle spirals towards a limit cycle near the vorticity axis for all initial conditions. Upon increasing$$\kappa$$, the limit cycle becomes smaller. Thus, ultimately the particle undergoes a periodic motion around and at a small angle from the vorticity axis. At moderate$$c\, De$$, a particle starting near the flow–gradient plane departs it monotonically instead of spirally, as this plane (a limit cycle at smaller$$c\, De$$) obtains a saddle and an unstable node. The former is close to the flow direction. Upon further increasing$$c\, De$$, the saddle node changes to a stable node. Therefore, depending upon the initial condition, a particle may either approach a periodic orbit near the vorticity axis or obtain a stable orientation near the flow direction. Upon further increasing$$c\, De$$, the limit cycle near the vorticity axis vanishes, and the particle aligns with the flow direction for all starting orientations.  more » « less
Award ID(s):
2206851
PAR ID:
10513120
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
976
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of partition cardinals. The following summarizes the main results proved under suitable partition hypotheses.•If$$\kappa $$is a cardinal,$$\epsilon < \kappa $$,$${\mathrm {cof}}(\epsilon ) = \omega $$,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and a$$\delta < \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if$$f \upharpoonright \delta = g \upharpoonright \delta $$and$$\sup (f) = \sup (g)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$is a cardinal,$$\epsilon $$is countable,$$\kappa \rightarrow _* (\kappa )^{\epsilon \cdot \epsilon }_2$$holds and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the strong almost everywhere short length continuity property: There is a club$$C \subseteq \kappa $$and finitely many ordinals$$\delta _0, ..., \delta _k \leq \epsilon $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$0 \leq i \leq k$$,$$\sup (f \upharpoonright \delta _i) = \sup (g \upharpoonright \delta _i)$$, then$$\Phi (f) = \Phi (g)$$.•If$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\kappa _2$$,$$\epsilon \leq \kappa $$and$$\Phi : [\kappa ]^\epsilon _* \rightarrow \mathrm {ON}$$, then$$\Phi $$satisfies the almost everywhere monotonicity property: There is a club$$C \subseteq \kappa $$so that for all$$f,g \in [C]^\epsilon _*$$, if for all$$\alpha < \epsilon $$,$$f(\alpha ) \leq g(\alpha )$$, then$$\Phi (f) \leq \Phi (g)$$.•Suppose dependent choice ($$\mathsf {DC}$$),$${\omega _1} \rightarrow _* ({\omega _1})^{\omega _1}_2$$and the almost everywhere short length club uniformization principle for$${\omega _1}$$hold. Then every function$$\Phi : [{\omega _1}]^{\omega _1}_* \rightarrow {\omega _1}$$satisfies a finite continuity property with respect to closure points: Let$$\mathfrak {C}_f$$be the club of$$\alpha < {\omega _1}$$so that$$\sup (f \upharpoonright \alpha ) = \alpha $$. There is a club$$C \subseteq {\omega _1}$$and finitely many functions$$\Upsilon _0, ..., \Upsilon _{n - 1} : [C]^{\omega _1}_* \rightarrow {\omega _1}$$so that for all$$f \in [C]^{\omega _1}_*$$, for all$$g \in [C]^{\omega _1}_*$$, if$$\mathfrak {C}_g = \mathfrak {C}_f$$and for all$$i < n$$,$$\sup (g \upharpoonright \Upsilon _i(f)) = \sup (f \upharpoonright \Upsilon _i(f))$$, then$$\Phi (g) = \Phi (f)$$.•Suppose$$\kappa $$satisfies$$\kappa \rightarrow _* (\kappa )^\epsilon _2$$for all$$\epsilon < \kappa $$. For all$$\chi < \kappa $$,$$[\kappa ]^{<\kappa }$$does not inject into$${}^\chi \mathrm {ON}$$, the class of$$\chi $$-length sequences of ordinals, and therefore,$$|[\kappa ]^\chi | < |[\kappa ]^{<\kappa }|$$. As a consequence, under the axiom of determinacy$$(\mathsf {AD})$$, these two cardinality results hold when$$\kappa $$is one of the following weak or strong partition cardinals of determinacy:$${\omega _1}$$,$$\omega _2$$,$$\boldsymbol {\delta }_n^1$$(for all$$1 \leq n < \omega $$) and$$\boldsymbol {\delta }^2_1$$(assuming in addition$$\mathsf {DC}_{\mathbb {R}}$$). 
    more » « less
  2. Electrophoresis is the motion of a charged colloidal particle in an electrolyte under an applied electric field. The electrophoretic velocity of a spherical particle depends on the dimensionless electric field strength$$\beta =a^*e^*E_\infty ^*/k_B^*T^*$$, defined as the ratio of the product of the applied electric field magnitude$$E_\infty ^*$$and particle radius$$a^*$$, to the thermal voltage$$k_B^*T^*/e^*$$, where$$k_B^*$$is Boltzmann's constant,$$T^*$$is the absolute temperature, and$$e^*$$is the charge on a proton. In this paper, we develop a spectral element algorithm to compute the electrophoretic velocity of a spherical, rigid, dielectric particle, of fixed dimensionless surface charge density$$\sigma$$over a wide range of$$\beta$$. Here,$$\sigma =(e^*a^*/\epsilon ^*k_B^*T^*)\sigma ^*$$, where$$\sigma ^*$$is the dimensional surface charge density, and$$\epsilon ^*$$is the permittivity of the electrolyte. For moderately charged particles ($$\sigma ={O}(1)$$), the electrophoretic velocity is linear in$$\beta$$when$$\beta \ll 1$$, and its dependence on the ratio of the Debye length ($$1/\kappa ^*$$) to particle radius (denoted by$$\delta =1/(\kappa ^*a^*)$$) agrees with Henry's formula. As$$\beta$$increases, the nonlinear contribution to the electrophoretic velocity becomes prominent, and the onset of this behaviour is$$\delta$$-dependent. For$$\beta \gg 1$$, the electrophoretic velocity again becomes linear in field strength, approaching the Hückel limit of electrophoresis in a dielectric medium, for all$$\delta$$. For highly charged particles ($$\sigma \gg 1$$) in the thin-Debye-layer limit ($$\delta \ll 1$$), our computations are in good agreement with recent experimental and asymptotic results. 
    more » « less
  3. An analysis is presented for the axisymmetric lubrication resistance between permeable spherical particles. Darcy's law is used to describe the flow in the permeable medium and a slip boundary condition is applied at the interface. The pressure in the near-contact region is governed by a non-local integral equation. The asymptotic limit$$K=k/a^{2} \ll 1$$is considered, where$$k$$is the arithmetic mean permeability, and$$a^{-1}=a^{-1}_{1}+a^{-1}_{2}$$is the reduced radius, and$$a_1$$and$$a_2$$are the particle radii. The formulation allows for particles with distinct particle radii, permeabilities and slip coefficients, including permeable and impermeable particles and spherical drops. Non-zero particle permeability qualitatively affects the axisymmetric near-contact motion, removing the classical lubrication singularity for impermeable particles, resulting in finite contact times under the action of a constant force. The lubrication resistance becomes independent of gap and attains a maximum value at contact$$F=6{\rm \pi} \mu a W K^{-2/5}\tilde {f}_c$$, where$$\mu$$is the fluid viscosity,$$W$$is the relative velocity and$$\tilde {f}_c$$depends on slip coefficients and weakly on permeabilities; for two permeable particles with no-slip boundary conditions,$$\tilde {f}_c=0.7507$$; for a permeable particle in near contact with a spherical drop,$$\tilde {f}_c$$is reduced by a factor of$$2^{-6/5}$$. 
    more » « less
  4. A lubrication analysis is presented for the resistances between permeable spherical particles in near contact,$$h_0/a\ll 1$$, where$$h_0$$is the minimum separation between the particles, and$$a=a_1 a_2/(a_1+a_2)$$is the reduced radius. Darcy's law is used to describe the flow inside the permeable particles and no-slip boundary conditions are applied at the particle surfaces. The weak permeability regime$$K=k/a^{2} \ll 1$$is considered, where$$k=\frac {1}{2}(k_1+k_2)$$is the mean permeability. Particle permeability enters the lubrication resistances through two functions of$$q=K^{-2/5}h_0/a$$, one describing axisymmetric motions, the other transverse. These functions are obtained by solving an integral equation for the pressure in the near-contact region. The set of resistance functions thus obtained provide the complete set of near-contact resistance functions for permeable spheres and match asymptotically to the standard hard-sphere resistances that describe pairwise hydrodynamic interactions away from the near-contact region. The results show that permeability removes the contact singularity for non-shearing particle motions, allowing rolling without slip and finite separation velocities between touching particles. Axisymmetric and transverse mobility functions are presented that describe relative particle motion under the action of prescribed forces and in linear flows. At contact, the axisymmetric mobility under the action of oppositely directed forces is$$U/U_0=d_0K^{2/5}$$, where$$U$$is the relative velocity,$$U_0$$is the velocity in the absence of hydrodynamic interactions and$$d_0=1.332$$. Under the action of a constant tangential force, a particle in contact with a permeable half-space rolls without slipping with velocity$$U/U_0=d_1(d_2+\log K^{-1})^{-1}$$, where$$d_1=3.125$$and$$d_2=6.666$$; in shear flow, the same expression holds with$$d_1=7.280$$. 
    more » « less
  5. We explored the settling dynamics of vertically aligned particles in a quiescent, stratified two-layer fluid using particle tracking velocimetry. Glass spheres of$$d=4\,{\rm mm}$$diameter were released at frequencies of 4, 6 and 8 Hz near the free surface, traversing through an upper ethanol layer ($$H_1$$), whereHis height or layer thickess, varying from$$10d$$to$$40d$$and a lower oil layer. Results reveal pronounced lateral particle motion in the ethanol layer, attributed to a higher Galileo number ($$Ga = 976$$, ratio of buoyancy–gravity to viscous effects), compared with the less active behaviour in the oil layer ($$Ga = 16$$). The ensemble vertical velocity of particles exhibited a minimum just past the density interface, becoming more pronounced with increasing$$H_1$$, and suggesting that enhanced entrainment from ethanol to oil resulted in an additional buoyancy force. This produced distinct patterns of particle acceleration near the density interface, which were marked by significant deceleration, indicating substantial resistance to particle motion. An increased drag coefficient occurred for$$H_1/d = 40$$compared with a single particle settling in oil; drag reduced as the particle-release frequency ($$\,f_p$$) increased, likely due to enhanced particle interactions at closer proximity. Particle pair dispersions, lateral ($$R^2_L$$) and vertical ($$R^2_z$$), were modulated by$$H_1$$, initial separation$$r_0$$and$$f_p$$. The$$R^2_L$$dispersion displayed ballistic scaling initially, Taylor scaling for$$r_0 < H_1$$and Richardson scaling for$$r_0 > H_1$$. In contrast,$$R^2_z$$followed a$$R^2_z \sim t^{5.5}$$scaling under$$r_0 < H_1$$. Both$$R^2_L$$and$$R^2_z$$plateaued at a distance from the interface, depending on$$H_1$$and$$f_p$$. 
    more » « less