skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-Particle Analysis of the Photodegradation of Submicron Polystyrene Particles Using Infrared Photothermal Heterodyne Imaging
Sunlight irradiation is the predominant process for degrading plastics in the environment, but our current understanding of the degradation of smaller, submicron (<1000 nm) particles is limited due to prior analytical constraints. We used infrared photothermal heterodyne imaging (IR-PHI) to simultaneously analyze the chemical and morphological changes of single polystyrene (PS) particles (∼1000 nm) when exposed to ultraviolet (UV) irradiation (λ = 250–400 nm). Within 6 h of irradiation, infrared bands associated with the backbone of PS decreased, accompanied by a reduction in the particle size. Concurrently, the formation of several spectral features due to photooxidation was attributed to ketones, carboxylic acids, aldehydes, esters, and lactones. Spectral outcomes were used to present an updated reaction scheme for the photodegradation of PS. After 36 h, the average particle size was reduced to 478 ± 158 nm. The rates of size decrease and carbonyl band area increase were −24 ± 3.0 nm h–1 and 2.1 ± 0.6 cm–1 h–1, respectively. Using the size-related rate, we estimated that under peak terrestrial sunlight conditions, it would take less than 500 h for a 1000 nm PS particle to degrade to 1 nm.  more » « less
Award ID(s):
1954724
PAR ID:
10513714
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
58
Issue:
2
ISSN:
0013-936X
Page Range / eLocation ID:
1312 to 1320
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Our previous work demonstrated formation of highly insoluble and strongly light-absorbing organic particles in reactions between catechol or guaiacol with Fe( iii ) under pH = 3 conditions characteristic of aerosol liquid water. This work extends these measurements to reactions of Fe( iii ) with 2,4-dinitrophenol, 4-nitrocatechol, 4-methylcatechol, 1,2,4-benzenetriol, 1,2,3-benzenetriol (pyrogallol) and coniferaldehyde to better understand the mechanism of particle formation catalyzed by Fe( iii ). Particles were observed after 2 h of reactions of catechol (43 ± 1% mass yield), 1,2,4-benzenetriol (32 ± 3%), pyrogallol (27 ± 2%) and coniferaldehyde (35 ± 4%), while reactions of 2,4-dinitrophenol and 4-nitrocatechol did not produce any insoluble products. No particles were observed in reaction of 4-methylcatechol after 2 h, however, insoluble products appeared after a 24 h reaction time. Irradiation of a catechol + Fe( iii ) mixture by 405 nm light was found to reduce (but not fully suppress) the particle yield due to a competition between photodegradation and Fe( iii )-catalyzed oligomerization. Particles produced from precursors + Fe( iii ) solutions were dissolved in organic solvents and analyzed with ultra performance liquid chromatography coupled to a photodiode array spectrophotometer and a high resolution mass spectrometer. Major separated chromophores were identified as dimeric, trimeric, and tetrameric products of precursor molecules. Purpurogallin was identified as a major reaction product of pyrogallol reaction with Fe( iii ). To test whether this chemistry can occur in more realistic atmospheric aerosols, reactions of biomass burning organic aerosol (BBOA) extracts with Fe( iii ) were also examined. Two BBOA samples collected under flaming conditions produced no particles, whereas a BBOA sample produced under smoldering conditions resulted in particle formation under both dark and 405 nm irradiation conditions. The results suggest that Fe( iii )-catalyzed chemistry can take place in aging BBOA plumes resulting from smoldering fires and make aerosol particles more light-absorbing. 
    more » « less
  2. High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800–900 °C for 1–2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 μm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 μm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 μm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals. 
    more » « less
  3. Silica nanoparticles find utility in different roles within the commercial domain. They are either employed in bulk within pharmaceutical formulations or at interfaces in anti-coalescing agents. Thus, studying the particle attributes contributing to the characteristics of silica particle-laden interfaces is of interest. The present work highlights the impact of particle size (i.e., 250 nm vs. 1000 nm) on the rheological properties of interfacial networks formed by hydrophobically modified silica nanoparticles at the air–water interface. The particle surface properties were examined using mobility measurements, Langmuir trough studies, and interfacial rheology techniques. Optical microscopy imaging along with Langmuir trough studies revealed the microstructure associated with various surface pressures and corresponding surface coverages (ϕ). The 1000 nm silica particle networks gave rise to a higher surface pressure at the same coverage compared to 250 nm particles on account of the stronger attractive capillary interactions. Interfacial rheological characterization revealed that networks with 1000 nm particles possess higher surface modulus and yield stress in comparison to the network obtained with 250 nm particles at the same surface pressure. These findings highlight the effect of particle size on the rheological characteristics of particle-laden interfaces, which is of importance in determining the stability and flow response of formulations comprising particle-stabilized emulsions and foams. 
    more » « less
  4. Multilayer polymer films are extensively used in multiphase separation. Electrospray deposition (ESD) is an important technique for fabricating such films with tunable morphology. Viscoelastic properties of polystyrene (PS) nanoshell coatings produced by ESD on gold and spin‐coated PS surfaces are evaluated using Quartz Crystal Microbalance with Dissipation (QCM‐D). The thickness of PS films on gold increases with flow rate from ∼200 nm at 0.5 to ∼400 nm at 1.5 mL h^−1, accompanied by an order‐of‐magnitude increase in dissipation due to larger particle sizes from shorter droplet flight times. This effect is absent on spin–coated PS films, suggesting the onset of the self‐limiting effect of charges. Although the shear moduli for ESD films calculated from Voigt models is only 0.08%–0.20% of the bulk PS modulus, the stiffness ratio of spray‐coated PS to a single shell is (5.00–13.3) × 10^3  m^−1, due to shell–shell and shell–substrate interactions. These are novel results related to the interparticle friction obtained using QCM‐D for the first time. This work demonstrates  that mechanical properties of particulate viscoelastic films with potential applications in high surface area sensors, such as size‐selective membranes for protein or electrolyte adsorption, can be evaluated by QCM‐D with nanograms of material. 
    more » « less
  5. Nimmo, Bill (Ed.)
    This manuscript reports on the combustion of powdered iron, for the purpose of utilizing it as an environmentally friendly circular energy carrier. The conducted research investigated the spectral emissivity and temperature of iron particles, burned either individually or in groups. Combustion experiments were conducted under high heating rates in an externally-heated drop tube furnace. The pressure was atmospheric and the axial temperature was nearly-constant at ~1350 K. The oxidizer gas contained 15-100% oxygen in nitrogen diluent. Iron particles were sieve-classified in the 44-53 µm range. Results showed that, depending on the oxygen concentration, and consequently the particle temperature, the average spectral emissivities of single burning particles varied between 0.18 and 0.46, in the 600-1000 nm wavelength range. Corresponding temperatures of single particles varied between 2300 K and 2800 K, increasing with increasing oxygen concentration in the gas. In the case of groups of iron particles burning in air at different particle number densities, average spectral emissivities were found to be in the range of 0.42-0.45, with the upper value associated with denser particle clouds. Corresponding peak temperatures of particle burning in groups were found to be in the range of 2160 K to 2100 K, with the lower value attributed to denser particle clouds. 
    more » « less