Abstract Silicon is the ideal material for building electronic and photonic circuits at scale. Integrated photonic quantum technologies in silicon offer a promising path to scaling by leveraging advanced semiconductor manufacturing and integration capabilities. However, the lack of deterministic quantum light sources and strong photon-photon interactions in silicon poses a challenge to scalability. In this work, we demonstrate an indistinguishable photon source in silicon photonics based on an artificial atom. We show that a G center in a silicon waveguide can generate high-purity telecom-band single photons. We perform high-resolution spectroscopy and time-delayed two-photon interference to demonstrate the indistinguishability of single photons emitted from a G center in a silicon waveguide. Our results show that artificial atoms in silicon photonics can source single photons suitable for photonic quantum networks and processors.
more »
« less
Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths
Abstract Indistinguishable single photons in the telecom-bandwidth of optical fibers are indispensable for long-distance quantum communication. Solid-state single photon emitters have achieved excellent performance in key benchmarks, however, the demonstration of indistinguishability at room-temperature remains a major challenge. Here, we report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity operated in the regime of incoherent good cavity-coupling. The efficiency of the coupled system outperforms spectral or temporal filtering, and the photon indistinguishability is increased by more than two orders of magnitude compared to the free-space limit. Our results highlight a promising strategy to attain optimized non-classical light sources.
more »
« less
- PAR ID:
- 10514103
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Subject(s) / Keyword(s):
- organic color centers carbon nanotube quantum technology single photon indistinguishability cavity
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Efficient and compact single photon emission platforms operating at room temperature with ultrafast speed and high brightness will be fundamental components of the emerging quantum communications and computing fields. However, so far, it is very challenging to design practical deterministic single photon emitters based on nanoscale solid‐state materials that meet the fast emission rate and strong brightness demands. Here, a solution is provided to this longstanding problem by using metallic nanocavities integrated with hexagonal boron nitride (hBN) flakes with defects acting as nanoscale single photon emitters (SPEs) at room temperature. The presented hybrid nanophotonic structure creates a rapid speedup and large enhancement in single photon emission at room temperature. Hence, the nonclassical light emission performance is substantially improved compared to plain hBN flakes and hBN on gold‐layered structures without nanocavity. Extensive theoretical calculations are also performed to accurately model the new hybrid nanophotonic system and prove that the incorporation of plasmonic nanocavity is key to efficient SPE performance. The proposed quantum nanocavity single photon source is expected to be an element of paramount importance to the envisioned room‐temperature integrated quantum photonic networks.more » « less
-
Defect-based single photon emitters play an important role in quantum information technologies. Quantum emitters in technologically mature direct wide bandgap semiconductors, such as nitrides, are attractive for on-chip photonic integration. GaN has recently been reported to host bright and photostable defect single photon emitters in the 600–700 nm wavelength range. Spectral diffusion caused by local electric field fluctuation around the emitter limits the photon indistinguishability, which is a key requirement for quantum applications. In this work, we investigate the spectral diffusion properties of GaN defect emitters integrated with a solid immersion lens, employing both spectral domain and time domain techniques through spectroscopy and photon autocorrelation measurements at cryogenic temperature. Our results show that the GaN defect emitter at 10 K exhibits a Gaussian line shape with a linewidth of ∼1 meV while the spectral diffusion characteristic time falls within the range of a few hundred nanoseconds to a few microseconds. We study the dependency of the spectral diffusion rate and Gaussian linewidth on the excitation laser power. Our work provides insight into the ultrafast spectral diffusion in GaN defect-based single photon emitter systems and contributes toward harnessing the potential of these emitters for applications, especially for indistinguishable single photon generation.more » « less
-
Abstract A robust process for fabricating intrinsic single‐photon emitters in silicon nitride is recently established. These emitters show promise for quantum applications due to room‐temperature operation and monolithic integration with technologically mature silicon nitride photonics platforms. Here, the fundamental photophysical properties of these emitters are probed through measurements of optical transition wavelengths, linewidths, and photon antibunching as a function of temperature from 4.2 to 300 K. Important insight into the potential for lifetime‐limited linewidths is provided through measurements of inhomogeneous and temperature‐dependent broadening of the zero‐phonon lines. At 4.2 K, spectral diffusion is found to be the main broadening mechanism, while spectroscopy time series reveal zero‐phonon lines with instrument‐limited linewidths.more » « less
An official website of the United States government

