Abstract The transverse momentum ($$p_{\textrm{T}}$$ ) differential production cross section of the promptly produced charm-strange baryon$$\mathrm {\Xi _{c}^{0}}$$ (and its charge conjugate$$\overline{\mathrm {\Xi _{c}^{0}}}$$ ) is measured at midrapidity via its hadronic decay into$$\mathrm{\pi ^{+}}\Xi ^{-}$$ in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision$$\sqrt{s_{\textrm{NN}}}~=~5.02$$  TeV with the ALICE detector at the LHC. The$$\mathrm {\Xi _{c}^{0}}$$ nuclear modification factor ($$R_{\textrm{pPb}}$$ ), calculated from the cross sections in pp and p–Pb collisions, is presented and compared with the$$R_{\textrm{pPb}}$$ of$$\mathrm {\Lambda _{c}^{+}}$$ baryons. The ratios between the$$p_{\textrm{T}}$$ -differential production cross section of$$\mathrm {\Xi _{c}^{0}}$$ baryons and those of$$\mathrm {D^0}$$ mesons and$$\mathrm {\Lambda _{c}^{+}}$$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt$$\Xi ^0_\textrm{c}$$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p–Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The$$p_{\textrm{T}}$$ -integrated cross section of prompt$$\Xi ^0_\textrm{c}$$ -baryon production at midrapidity extrapolated down to$$p_{\textrm{T}}$$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p–Pb collisions at midrapidity. 
                        more » 
                        « less   
                    
                            
                            Charm production and fragmentation fractions at midrapidity in pp collisions at $$ \sqrt{\textrm{s}} $$ = 13 TeV
                        
                    
    
            A<sc>bstract</sc> Measurements of the production cross sections of prompt D0, D+, D*+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ , and$$ {\Xi}_{\textrm{c}}^{+} $$ charm hadrons at midrapidity in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios ofpT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x(10−5–10−4). The measurements of$$ {\Lambda}_{\textrm{c}}^{+} $$ ($$ {\Xi}_{\textrm{c}}^{+} $$ ) baryon production extend the measuredpTintervals down topT= 0(3) GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ ,$$ {\Xi}_{\textrm{c}}^0 $$ and, for the first time,$$ {\Xi}_{\textrm{c}}^{+} $$ , and of the strongly-decaying J/ψmesons. The first measurements of$$ {\Xi}_{\textrm{c}}^{+} $$ and$$ {\Sigma}_{\textrm{c}}^{0,++} $$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e−and ep collisions. The$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10514271
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- link.springer.com
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 12
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A<sc>bstract</sc> The production cross sections of D0, D+, and$$ {\Lambda}_{\textrm{c}}^{+} $$ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton–lead (p–Pb) collisions at the center-of-mass energy per nucleon pair of$$ \sqrt{s_{\textrm{NN}}} $$ = 5.02 TeV. Nuclear modification factors (RpPb) of non-prompt D0, D+, and$$ {\Lambda}_{\textrm{c}}^{+} $$ are calculated as a function of the transverse momentum (pT) to investigate the modification of the momentum spectra measured in p–Pb collisions with respect to those measured in proton–proton (pp) collisions at the same energy. TheRpPbmeasurements are compatible with unity and with the measurements in the prompt charm sector, and do not show a significantpTdependence. ThepT-integrated cross sections andpT-integratedRpPbof non-prompt D0and D+mesons are also computed by extrapolating the visible cross sections down topT= 0. The non-prompt D-mesonRpPbintegrated overpTis compatible with unity and with model calculations implementing modification of the parton distribution functions of nucleons bound in nuclei with respect to free nucleons. The non-prompt$$ {\Lambda}_{\textrm{c}}^{+} $$ /D0and D+/D0production ratios are computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons. The measured ratios as a function ofpTdisplay a similar trend to that measured for charm hadrons in the same collision system.more » « less
- 
            A<sc>bstract</sc> ThepT-differential production cross sections of non-prompt D0, D+, and$$ {\textrm{D}}_{\textrm{s}}^{+} $$ mesons originating from beauty-hadron decays are measured in proton–proton collisions at a centre-of-mass energy$$ \sqrt{s} $$ = 13 TeV. The measurements are performed at midrapidity, |y|<0.5, with the data sample collected by ALICE from 2016 to 2018. The results are in agreement with predictions from several perturbative QCD calculations. The fragmentation fraction of beauty quarks to strange mesons divided by the one to non-strange mesons,fs/(fu+fd), is found to be 0.114 ± 0.016 (stat.) ± 0.006 (syst.) ± 0.003 (BR) ± 0.003 (extrap.). This value is compatible with previous measurements at lower centre-of-mass energies and in different collision systems in agreement with the assumption of universality of fragmentation functions. In addition, the dependence of the non-prompt D meson production on the centre-of-mass energy is investigated by comparing the results obtained at$$ \sqrt{s} $$ = 5.02 and 13 TeV, showing a hardening of the non-prompt D-mesonpT-differential production cross section at higher$$ \sqrt{s} $$ . Finally, the$$ \textrm{b}\overline{\textrm{b}} $$ production cross section per unit of rapidity at midrapidity is calculated from the non-prompt D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ , and$$ {\Lambda}_{\textrm{c}}^{+} $$ hadron measurements, obtaining$$ \textrm{d}\sigma /\textrm{d}y=75.2\pm 3.2\left(\textrm{stat}.\right)\pm 5.2{\left(\textrm{syst}.\right)}_{-3.2}^{+12.3}\left(\textrm{extrap}.\right) $$ μb.more » « less
- 
            A<sc>bstract</sc> The production of (multi-)strange hadrons is measured at midrapidity in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV as a function of the local charged-particle multiplicity in the pseudorapidity interval |η|<0.5 and of the very-forward energy measured by the ALICE Zero-Degree Calorimeters. The latter provides information on the effective energy, i.e. the energy available for particle production in the collision once subtracted from the centre-of-mass energy. The yields of$$ {\textrm{K}}_{\textrm{S}}^0 $$ ,$$ \Lambda +\overline{\Lambda} $$ , and$$ {\Xi}^{-}+{\overline{\Xi}}^{+} $$ per charged-particle increase with the effective energy. In addition, this work exploits a multi-differential approach to decouple the roles of local multiplicity and effective energy in such an enhancement. The results presented in this article provide new insights into the interplay between global properties of the collision, such as the initial available energy in the event, and the locally produced final hadronic state, connected to the charged-particle multiplicity at midrapidity. Notably, a strong increase of strange baryon production with effective energy is observed for fixed charged-particle multiplicity at midrapidity. These results are discussed within the context of existing phenomenological models of hadronisation implemented in different tunes of the PYTHIA 8 event generator.more » « less
- 
            Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ at midrapidity ($$-0.96<0.04$$ in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ ,$$\textrm{D}^{+}$$ ,$$\textrm{D}_\textrm{s}^{+}$$ , and$$\mathrm {J/\psi }$$ mesons, and$$\Lambda _\textrm{c}^{+}$$ and$$\Xi _\textrm{c}^{0}$$ baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ and$$\mathrm {e^{-}p}$$ collisions. The$$p_\textrm{T}$$ -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    