Haptic force feedback systems are unique in their ability to dynamically render physical representations. Although haptic devices have shown promise for supporting learning, prior work mainly describes results of haptic-supported learning without identifying underlying learning mechanisms. To this end, we designed a haptic-supported learning environment and analyzed four students who used it to make connections between two different mathematical representations of sine and cosine: the unit circle, and their graph on the Cartesian plane. We highlight moments where students made connections between the representations, and identify how the haptic feedback supported these moments of insight. We use this evidence in support of a proposed theoretical and design framework for educational haptics. This framework captures four types of haptic representations, and focuses on one -- the haptic bridge -- that effectively scaffolds sense-making with multiple representations.
more »
« less
Gait Sensing and Haptic Feedback Using an Inflatable Soft Haptic Sensor
Abstract Collecting gait data and providing haptic feedback are essential for the safety and efficiency of robot-based rehabilitation. However, readily available devices that can perform both are scarce. This work presents a novel method for mutual sensing and haptic feedback, through the development of an inflatable soft haptic sensor (ISHASE). The design, modeling, and characterization of ISHASE are discussed. Four ISHASEs are embedded in the insole of a shoe to measure ground reaction forces and provide haptic feedback. Four participants were recruited to evaluate the performance of ISHASE as a sensor and haptic device. Experimental results indicate that ISHASE can accurately estimate user’s ground reaction forces while walking, with a maximum and a minimum accuracy of 91% and 85%, respectively. Haptic feedback was delivered to four different locations under the foot, and users could identify the location with an average 92% accuracy. A case study that exemplifies a rehabilitation scenario is presented to demonstrate ISHASE’s usefulness for mutual sensing and haptic feedback.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10514454
- Publisher / Repository:
- American Society of Mechanical Engineers Digital Collection
- Date Published:
- Journal Name:
- ASME Letters in Dynamic Systems and Control
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2689-6117
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Relocation of haptic feedback from the fingertips to the wrist has been considered as a way to enable haptic interaction with mixed reality virtual environments while leaving the fingers free for other tasks. We present a pair of wrist-worn tactile haptic devices and a virtual environment to study how various mappings between fingers and tactors affect task performance. The haptic feedback rendered to the wrist reflects the interaction forces occurring between a virtual object and virtual avatars controlled by the index finger and thumb. We performed a user study comparing four different finger-to-tactor haptic feedback mappings and one no-feedback condition as a control. We evaluated users' ability to perform a simple pick-and-place task via the metrics of task completion time, path length of the fingers and virtual cube, and magnitudes of normal and shear forces at the fingertips. We found that multiple mappings were effective, and there was a greater impact when visual cues were limited. We discuss the limitations of our approach and describe next steps toward multi-degree-of-freedom haptic rendering for wrist-worn devices to improve task performance in virtual environments.more » « less
-
Abstract ROV operations are mainly performed via a traditional control kiosk and limited data feedback methods, such as the use of joysticks and camera view displays equipped on a surface vessel. This traditional setup requires significant personnel on board (POB) time and imposes high requirements for personnel training. This paper proposes a virtual reality (VR) based haptic-visual ROV teleoperation system that can substantially simplify ROV teleoperation and enhance the remote operator's situational awareness. This study leverages the recent development in Mixed Reality (MR) technologies, sensory augmentation, sensing technologies, and closed-loop control, to visualize and render complex underwater environmental data in an intuitive and immersive way. The raw sensor data will be processed with physics engine systems and rendered as a high-fidelity digital twin model in game engines. Certain features will be visualized and displayed via the VR headset, whereas others will be manifested as haptic and tactile cues via our haptic feedback systems. We applied a simulation approach to test the developed system. With our developed system, a high-fidelity subsea environment is reconstructed based on the sensor data collected from an ROV including the bathymetric, hydrodynamic, visual, and vehicle navigational measurements. Specifically, the vehicle is equipped with a navigation sensor system for real-time state estimation, an acoustic Doppler current profiler for far-field flow measurement, and a bio-inspired artificial literal-line hydrodynamic sensor system for near-field small-scale hydrodynamics. Optimized game engine rendering algorithms then visualize key environmental features as augmented user interface elements in a VR headset, such as color-coded vectors, to indicate the environmental impact on the performance and function of the ROV. In addition, augmenting environmental feedback such as hydrodynamic forces are translated into patterned haptic stimuli via a haptic suit for indicating drift-inducing flows in the near field. A pilot case study was performed to verify the feasibility and effectiveness of the system design in a series of simulated ROV operation tasks. ROVs are widely used in subsea exploration and intervention tasks, playing a critical role in offshore inspection, installation, and maintenance activities. The innovative ROV teleoperation feedback and control system will lower the barrier for ROV pilot jobs.more » « less
-
Iskander, Magdy F (Ed.)ABSTRACT Innovative technology helps students foster creative thinking and problem‐solving abilities by augmenting human sensing and enriching input and output information. New technology can incorporate haptic sensing features—a sensing modality for user operations. Learning with haptic sensing features promises new ways to master cognitive and motor skills and higher‐order cognitive reasoning tasks (e.g., decision‐making and problem‐solving). This study conceptualizes haptic technology within the human‐technology interaction (HTI) framework. It aims to investigate the components of haptic systems to define their impact on learning and facilitate understanding of haptic technology, including application development to ease entry barriers for educators. The research builds a haptic HTI framework based on a systematic literature review on haptic applications in engineering learning over the last two decades. The review utilizes the SALSA methodology to analyze relevant studies comprehensively. The framework outcome is a haptic HTI taxonomy to build visual representations of the explicit connection between the taxonomy components and practical educational applications (by means of heatmaps). The approach led to a robust conceptualization of HTI into a taxonomy—a structured framework encompassing categories for interaction modalities, immersive technologies, and learning methodologies in engineering education. The model assists in understanding how haptic feedback can be utilized in learning with technology experiences. Applying haptic technology in engineering education includes mastering fundamental science concepts and creating customized haptic prototypes for engineering processes. A growing trend focuses on wearable haptics, such as gloves and vests, which involve kinesthetic movement, fine motor skills, and spatial awareness—all fostering spatial and temporal cognitive abilities (the ability to effectively manage and comprehend significant amounts ofspatial(how design components or resources are related to one another in the 3D space) andtemporal(the logic in a process, such as the order, sequences, and hierarchies of the resources information). The haptic human‐technology interaction (H‐HTI) framework guides future research in developing cognitive reasoning through H‐HTI, unlocking new frontiers in engineering education.more » « less
-
Haptic feedback offers a useful mode of communication in visually or auditorily noisy environments. The adoption of haptic devices in our everyday lives, however, remains limited, motivating research on haptic wearables constructed from materials that enable comfortable and lightweight form factors. Textiles, a material class fitting these needs and already ubiquitous in clothing, have begun to be used in haptics, but reliance on arrays of electromechanical controllers detracts from the benefits that textiles offer. Here, we mitigate the requirement for bulky hardware by developing a class of wearable haptic textiles capable of delivering high-resolution information on the basis of embedded fluidic programming. The designs of these haptic textiles enable tailorable amplitudinal, spatial, and temporal control. Combining these capabilities, we demonstrate wearables that deliver spatiotemporal cues in four directions with an average user accuracy of 87%. Subsequent demonstrations of washability, repairability, and utility for navigational tasks exemplify the capabilities of our approach.more » « less
An official website of the United States government

