skip to main content


Title: Most Expected Winner: An Interpretation of Winners over Uncertain Voter Preferences

It remains an open question how to determine the winner of an election when voter preferences are incomplete or uncertain. One option is to assume some probability space over the voting profile and select the Most Probable Winner (MPW) -- the candidate or candidates with the best chance of winning. In this paper, we propose an alternative winner interpretation, selecting the Most Expected Winner (MEW) according to the expected performance of the candidates.

We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.

 
more » « less
Award ID(s):
1916505 1916647 1934464
PAR ID:
10514476
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Management of Data
Volume:
1
Issue:
1
ISSN:
2836-6573
Page Range / eLocation ID:
1 to 25
Subject(s) / Keyword(s):
computational social choice voting and elections positional scoring rules uncertain preferences
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It remains an open question how to determine the winner of an election given incomplete or uncertain voter preferences. One solution is to assume some probability space for the voting profile and declare that the candidates having the best chance of winning are the (co-)winners. We refer to this interpretation as the Most Probable Winner (MPW). In this paper, we focus on elections that use positional scoring rules, and propose an alternative winner interpretation, the Most Expected Winner (MEW), according to the expected performance of the candidates. We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical. 
    more » « less
  2. Instant runoff voting (IRV) is an increasingly-popular alternative to traditional plurality voting in which voters submit rankings over the candidates rather than single votes. In practice, elections using IRV often restrict the ballot length, the number of candidates a voter is allowed to rank on their ballot. We theoretically and empirically analyze how ballot length can influence the outcome of an election, given fixed voter preferences. We show that there exist preference profiles over k candidates such that up to k-1 different candidates win at different ballot lengths. We derive exact lower bounds on the number of voters required for such profiles and provide a construction matching the lower bound for unrestricted voter preferences. Additionally, we characterize which sequences of winners are possible over ballot lengths and provide explicit profile constructions achieving any feasible winner sequence. We also examine how classic preference restrictions influence our results—for instance, single-peakedness makes k-1 different winners impossible but still allows at least Ω(√k). Finally, we analyze a collection of 168 real-world elections, where we truncate rankings to simulate shorter ballots. We find that shorter ballots could have changed the outcome in one quarter of these elections. Our results highlight ballot length as a consequential degree of freedom in the design of IRV elections. 
    more » « less
  3. Instant runoff voting (IRV) has recently gained popularity as an alternative to plurality voting for political elections, with advocates claiming a range of advantages, including that it produces more moderate winners than plurality and could thus help address polarization. However, there is little theoretical backing for this claim, with existing evidence focused on case studies and simulations. In this work, we prove that IRV has a moderating effect relative to plurality voting in a precise sense, developed in a 1-dimensional Euclidean model of voter preferences. We develop a theory of exclusion zones, derived from properties of the voter distribution, which serve to show how moderate and extreme candidates interact during IRV vote tabulation. The theory allows us to prove that if voters are symmetrically distributed and not too concentrated at the extremes, IRV cannot elect an extreme candidate over a moderate. In contrast, we show plurality can and validate our results computationally. Our methods provide new frameworks for the analysis of voting systems, deriving exact winner distributions geometrically and establishing a connection between plurality voting and stick-breaking processes.

     
    more » « less
  4. In many real world situations, collective decisions are made using voting and, in scenarios such as committee or board elections, employing voting rules that return multiple winners. In multi-winner approval voting (AV), an agent submits a ballot consisting of approvals for as many candidates as they wish, and winners are chosen by tallying up the votes and choosing the top-k candidates receiving the most approvals. In many scenarios, an agent may manipulate the ballot they submit in order to achieve a better outcome by voting in a way that does not reflect their true preferences. In complex and uncertain situations, agents may use heuristics instead of incurring the additional effort required to compute the manipulation which most favors them. In this paper, we examine voting behavior in single-winner and multi-winner approval voting scenarios with varying degrees of uncertainty using behavioral data obtained from Mechanical Turk. We find that people generally manipulate their vote to obtain a better outcome, but often do not identify the optimal manipulation. There are a number of predictive models of agent behavior in the social choice and psychology literature that are based on cognitively plausible heuristic strategies. We show that the existing approaches do not adequately model our real-world data. We propose a novel model that takes into account the size of the winning set and human cognitive constraints; and demonstrate that this model is more effective at capturing real-world behaviors in multi-winner approval voting scenarios. 
    more » « less
  5. The study of fairness in multiwinner elections focuses on settings where candidates have attributes. However, voters may also be divided into predefined populations under one or more attributes. The models that focus on candidate attributes alone may systematically under-represent smaller voter populations. Hence, we develop a model, DiRe Committee Winner Determination (DRCWD), which delineates candidate and voter attributes to select a committee by specifying diversity and representation constraints and a voting rule. We analyze its computational complexity and develop a heuristic algorithm, which finds the winning DiRe committee in under two minutes on 63% of the instances of synthetic datasets and on 100% of instances of real-world datasets. We also present an empirical analysis of feasibility and utility traded-off. Moreover, even when the attributes of candidates and voters coincide, it is important to treat them separately as diversity does not imply representation and vice versa. This is to say that having a female candidate on the committee, for example, is different from having a candidate on the committee who is preferred by the female voters, and who themselves may or may not be female. 
    more » « less