skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human–machine partnerships at the exascale: exploring simulation ensembles through image databases
The explosive growth in supercomputers capacity has changed simulation paradigms. Simulations have shifted from a few lengthy ones to an ensemble of multiple simulations with varying initial conditions or input parameters. Thus, an ensemble consists of large volumes of multi-dimensional data that could go beyond the exascale boundaries. However, the disparity in growth rates between storage capabilities and computing resources results in I/O bottlenecks. This makes it impractical to utilize conventional postprocessing and visualization tools for analyzing such massive simulation ensembles. In situ visualization approaches alleviate I/O constraints by saving predetermined visualizations in image databases during simulation. Nevertheless, the unavailability of output raw data restricts the flexibility of post hoc exploration of in situ approaches. Much research has been conducted to mitigate this limitation, but it falls short when it comes to simultaneously exploring and analyzing parameter and ensemble spaces. In this paper, we propose an expert-in-the-loop visual exploration analytic approach. The proposed approach leverages: feature extraction, deep learning, and human expert–AI collaboration techniques to explore and analyze image-based ensembles. Our approach utilizes local features and deep learning techniques to learn the image features of ensemble members. The extracted features are then combined with simulation input parameters and fed to the visualization pipeline for in-depth exploration and analysis using human expert + AI interaction techniques. We show the effectiveness of our approach using several scientific simulation ensembles.  more » « less
Award ID(s):
2310948
PAR ID:
10514608
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Journal of Visualization
ISSN:
1343-8875
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose a novel framework that combines state-of-the-art deep learning approaches with pre- and post-processing algorithms for particle detection in complex/heterogeneous backgrounds common in the manufacturing domain. Traditional methods, like size analyzers and those based on dilution, image processing, or deep learning, typically excel with homogeneous backgrounds. Yet, they often fall short in accurately detecting particles against the intricate and varied backgrounds characteristic of heterogeneous particle–substrate (HPS) interfaces in manufacturing. To address this, we've developed a flexible framework designed to detect particles in diverse environments and input types. Our modular framework hinges on model selection and AI-guided particle detection as its core, with preprocessing and postprocessing as integral components, creating a four-step process. This system is versatile, allowing for various preprocessing, AI model selections, and post-processing strategies. We demonstrate this with an entrainment-based particle delivery method, transferring various particles onto substrates that mimic the HPS interface. By altering particle and substrate properties (e.g., material type, size, roughness, shape) and process parameters (e.g., capillary number) during particle entrainment, we capture images under different ambient lighting conditions, introducing a range of HPS background complexities. In the preprocessing phase, we apply image enhancement and sharpening techniques to improve detection accuracy. Specifically, image enhancement adjusts the dynamic range and histogram, while sharpening increases contrast by combining the high pass filter output with the base image. We introduce an image classifier model (based on the type of heterogeneity), employing Transfer Learning with MobileNet as a Model Selector, to identify the most appropriate AI model (i.e., YOLO model) for analyzing each specific image, thereby enhancing detection accuracy across particle–substrate variations. Following image classification based on heterogeneity, the relevant YOLO model is employed for particle identification, with a distinct YOLO model generated for each heterogeneity type, improving overall classification performance. In the post-processing phase, domain knowledge is used to minimize false positives. Our analysis indicates that the AI-guided framework maintains consistent precision and recall across various HPS conditions, with the harmonic mean of these metrics comparable to those of individual AI model outcomes. This tool shows potential for advancing in-situ process monitoring across multiple manufacturing operations, including high-density powder-based 3D printing, powder metallurgy, extreme environment coatings, particle categorization, and semiconductor manufacturing. 
    more » « less
  2. Existing studies have demonstrated that using traditional machine learning techniques, phishing detection simply based on the features of URLs can be very effective. In this paper, we explore the deep learning approach and build four RNN (Recurrent Neural Network) models that only use lexical features of URLs for detecting phishing attacks. We collect 1.5 million URLs as the dataset and show that our RNN models can achieve a higher than 99% detection accuracy without the need of any expert knowledge to manually identify the features. However, it is well known that RNNs and other deep learning techniques are still largely in black boxes. Understanding the internals of deep learning models is important and highly desirable to the improvement and proper application of the models. Therefore, in this work, we further develop several unique visualization techniques to intensively interpret how RNN models work internally in achieving the outstanding phishing detection performance. Especially, we identify and answer six important research questions, showing that our four RNN models (1) are complementary to each other and can be combined into an ensemble model with even better accuracy, (2) can well capture the relevant features that were manually extracted and used in the traditional machine learning approach for phishing detection, and (3) can help identify useful new features to enhance the accuracy of the traditional machine learning approach. Our techniques and experience in this work could be helpful for researchers to effectively apply deep learning techniques in addressing other real-world security or privacy problems. 
    more » « less
  3. While the physical properties of carbon nanotubes (CNTs) are often superior to conventional engineering materials, their widespread adoption into many applications is limited by scaling the properties of individual CNTs to macroscale CNT assemblies known as CNT forests. The self-assembly mechanics of CNT forests that determine their morphology and ensemble properties remain poorly understood. Few experimental techniques exist to characterize and observe the growth and self-assembly processes in situ. Here we introduce the use of in-situ scanning electron microscope (SEM) synthesis based on chemical vapor deposition (CVD) processing. In this preliminary report, we share best practices for in-situ SEM CVD processing and initial CNT forest synthesis results. Image analysis techniques are developed to identify and track the movement of catalyst nanoparticles during synthesis conditions. Finally, a perspective is provided in which in-situ SEM observations represent one component of a larger system in which numerical simulation, machine learning, and digital control of experiments reduces the role of humans and human error in the exploration of CNT forest process-structure-property relationships. 
    more » « less
  4. A significant challenge on an exascale computer is the speed at which we compute results exceeds by many orders of magnitude the speed at which we save these results. Therefore the Exascale Computing Project (ECP) ALPINE project focuses on providing exascale-ready visualization solutions including in situ processing. In situ visualization and analysis runs as the simulation is run, on simulations results are they are generated avoiding the need to save entire simulations to storage for later analysis. The ALPINE project made post hoc visualization tools, ParaView and VisIt, exascale ready and developed in situ algorithms and infrastructures. The suite of ALPINE algorithms developed under ECP includes novel approaches to enable automated data analysis and visualization to focus on the most important aspects of the simulation. Many of the algorithms also provide data reduction benefits to meet the I/O challenges at exascale. ALPINE developed a new lightweight in situ infrastructure, Ascent. 
    more » « less
  5. Abstract With recent advances in multi‐modal foundation models, the previously text‐only large language models (LLM) have evolved to incorporate visual input, opening up unprecedented opportunities for various applications in visualization. Compared to existing work on LLM‐based visualization works that generate and control visualization with textual input and output only, the proposed approach explores the utilization of the visual processing ability of multi‐modal LLMs to develop Autonomous Visualization Agents (AVAs) that can evaluate the generated visualization and iterate on the result to accomplish user‐defined objectives defined through natural language. We propose the first framework for the design of AVAs and present several usage scenarios intended to demonstrate the general applicability of the proposed paradigm. Our preliminary exploration and proof‐of‐concept agents suggest that this approach can be widely applicable whenever the choices of appropriate visualization parameters require the interpretation of previous visual output. Our study indicates that AVAs represent a general paradigm for designing intelligent visualization systems that can achieve high‐level visualization goals, which pave the way for developing expert‐level visualization agents in the future. 
    more » « less