We formulate the first differentiable analog quantum computing framework with specific parameterization design at the analog signal (pulse) level to better exploit near-term quantum devices via variational methods. We further propose a scalable approach to estimate the gradients of quantum dynamics using a forward pass with Monte Carlo sampling, which leads to a quantum stochastic gradient descent algorithm for scalable gradient-based training in our framework. Applying our framework to quantum optimization and control, we observe a significant advantage of differentiable analog quantum computing against SOTAs based on parameterized digital quantum circuits by {\em orders of magnitude}.
more »
« less
Differentiable Quantum Programming with Unbounded Loops
The emergence of variational quantum applications has led to the development of automatic differentiation techniques in quantum computing. Existing work has formulated differentiable quantum programming with bounded loops, providing a framework for scalable gradient calculation by quantum means for training quantum variational applications. However, promising parameterized quantum applications, e.g., quantum walk and unitary implementation, cannot be trained in the existing framework due to the natural involvement of unbounded loops. To fill in the gap, we provide the first differentiable quantum programming framework with unbounded loops, including a newly designed differentiation rule, code transformation, and their correctness proof. Technically, we introduce a randomized estimator for derivatives to deal with the infinite sum in the differentiation of unbounded loops, whose applicability in classical and probabilistic programming is also discussed. We implement our framework with Python and Q# and demonstrate a reasonable sample efficiency. Through extensive case studies, we showcase an exciting application of our framework in automatically identifying close-to-optimal parameters for several parameterized quantum applications.
more »
« less
- Award ID(s):
- 1942837
- PAR ID:
- 10514841
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Software Engineering and Methodology
- Volume:
- 33
- Issue:
- 1
- ISSN:
- 1049-331X
- Page Range / eLocation ID:
- 1 to 63
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We have developed a differentiable programming framework for truncated hierarchical B-splines (THB-splines), which can be used for several applications in geometry modeling, such as surface fitting and deformable image registration, and can be easily integrated with geometric deep learning frameworks. Differentiable programming is a novel paradigm that enables an algorithm to be differentiated via automatic differentiation, i.e., using automatic differentiation to compute the derivatives of its outputs with respect to its inputs or parameters. Differentiable programming has been used extensively in machine learning for obtaining gradients required in optimization algorithms such as stochastic gradient descent (SGD). While incorporating differentiable programming with traditional functions is straightforward, it is challenging when the functions are complex, such as splines. In this work, we extend the differentiable programming paradigm to THB-splines. THB-splines offer an efficient approach for complex surface fitting by utilizing a hierarchical tensor structure of B-splines, enabling local adaptive refinement. However, this approach brings challenges, such as a larger computational overhead and the non-trivial implementation of automatic differentiation and parallel evaluation algorithms. We use custom kernel functions for GPU acceleration in forward and backward evaluation that are necessary for differentiable programming of THB-splines. Our approach not only improves computational efficiency but also significantly enhances the speed of surface evaluation compared to previous methods. Our differentiable THB-splines framework facilitates faster and more accurate surface modeling with local refinement, with several applications in CAD and isogeometric analysis.more » « less
-
This paper develops a new framework for program synthesis, called semantics-guided synthesis (SemGuS), that allows a user to provide both the syntax and the semantics for the constructs in the language. SemGuS accepts a recursively defined big-step semantics, which allows it, for example, to be used to specify and solve synthesis problems over an imperative programming language that may contain loops with unbounded behavior. The customizable nature of SemGuS also allows synthesis problems to be defined over a non-standard semantics, such as an abstract semantics. In addition to the SemGuS framework, we develop an algorithm for solving SemGuS problems that is capable of both synthesizing programs and proving unrealizability, by encoding a SemGuS problem as a proof search over Constrained Horn Clauses: in particular, our approach is the first that we are aware of that can prove unrealizabilty for synthesis problems that involve imperative programs with unbounded loops, over an infinite syntactic search space. We implemented the technique in a tool called MESSY, and applied it to SyGuS problems (i.e., over expressions), synthesis problems over an imperative programming language, and synthesis problems over regular expressions.more » « less
-
Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research has explored a higher level of optimization by making the quantum circuits themselves resilient to noise.In this paper, we propose QuantumNAS, a comprehensive framework for noise-adaptive co-search of the variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing quantum neural networks for machine learning and variational ansatzes for quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging due to the large design space and parameter training cost. We propose to decouple the circuit search from parameter training by introducing a novel SuperCircuit. The SuperCircuit is constructed with multiple layers of pre-defined parameterized gates (e.g., U3 and CU3) and trained by iteratively sampling and updating the parameter subsets (SubCircuits) of it. It provides an accurate estimation of SubCircuits performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to remove redundant gates in a fine-grained manner.Extensively evaluated with 12 quantum machine learning (QML) and variational quantum eigensolver (VQE) benchmarks on 14 quantum computers, QuantumNAS significantly outperforms noise-unaware search, human, random, and existing noise-adaptive qubit mapping baselines. For QML tasks, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real quantum computers. It also achieves the lowest eigenvalue for VQE tasks on H 2 , H 2 O, LiH, CH 4 , BeH 2 compared with UCCSD baselines. We also open-source the TorchQuantum library for fast training of parameterized quantum circuits to facilitate future research.more » « less
-
Computations in physical simulation, computer graphics, and probabilistic inference often require the differentiation of discontinuous processes due to contact, occlusion, and changes at a point in time. Popular differentiable programming languages, such as PyTorch and JAX, ignore discontinuities during differentiation. This is incorrect forparametric discontinuities—conditionals containing at least one real-valued parameter and at least one variable of integration. We introduce Potto, the first differentiable first-order programming language to soundly differentiate parametric discontinuities. We present a denotational semantics for programs and program derivatives and show the two accord. We describe the implementation of Potto, which enables separate compilation of programs. Our prototype implementation overcomes previous compile-time bottlenecks achieving an 88.1x and 441.2x speed up in compile time and a 2.5x and 7.9x speed up in runtime, respectively, on two increasingly large image stylization benchmarks. We showcase Potto by implementing a prototype differentiable renderer with separately compiled shaders.more » « less
An official website of the United States government

