skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Low-temperature synthesis of crystalline vanadium oxide films using oxygen plasmas

Vanadium oxide (VOx) compounds feature various polymorphs, including V2O5 and VO2, with attractive temperature-tunable optical and electrical properties. However, to achieve the desired material property, high-temperature post-deposition annealing of as-grown VOx films is mostly needed, limiting its use for low-temperature compatible substrates and processes. Herein, we report on the low-temperature hollow-cathode plasma-enhanced atomic layer deposition (ALD) of crystalline vanadium oxide thin films using tetrakis(ethylmethylamido)vanadium and oxygen plasma as a precursor and coreactant, respectively. To extract the impact of the type of plasma source, VOx samples were also synthesized in an inductively coupled plasma-enhanced ALD reactor. Moreover, we have incorporated in situ Ar-plasma and ex situ thermal annealing to investigate the tunability of VOx structural properties. Our findings confirm that both plasma-ALD techniques were able to synthesize as-grown polycrystalline V2O5 films at 150 °C. Postdeposition thermal annealing converted the as-grown V2O5 films into different crystalline VOx states: V2O3, V4O9, and VO2. The last one, VO2 is particularly interesting as a phase-change material, and the metal-insulator transition around 70 °C has been confirmed using temperature-dependent x-ray diffraction and resistivity measurements.

 
more » « less
Award ID(s):
2150158
NSF-PAR ID:
10515106
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
AVS
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
3
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemically preintercalated dopamine (DOPA) molecules were used as both reducing agent and carbon precursor to prepare δ-V2O5∙nH2O/C, H2V3O8/C, VO2(B)/C and V2O3/C nanocomposites via hydrothermal treatment or hydrothermal treatment followed by annealing under Ar flow. We found that the phase composition and morphology of the produced composites are influenced by the DOPA:V2O5 ratio used to synthesize (DOPA)xV2O5 precursors through DOPA diffusion into the interlayer region of δ-V2O5∙nH2O framework. The increase of DOPA concentration in the reaction mixture led to more pronounced reduction of vanadium and a higher fraction of carbon in the composites’ structure, as evidenced by XPS and Raman spectroscopy measurements. The electrochemical charge storage properties of the synthesized nanocomposites were evaluated in Li-ion cells with non-aqueous electrolyte. δ-V2O5∙nH2O/C, H2V3O8/C, VO2(B)/C, and V2O3/C electrodes delivered high initial capacities of 214, 252, 279, and 637 mAh·g–1, respectively. The insights provided by this investigation open up the possibility of creating new nanocomposite oxide/carbon electrodes for a variety of applications such as energy storage, sensing and electrochromic devices. 
    more » « less
  2. To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS 2 ), here we report studies of the reactions of molybdenum hexafluoride (MoF 6 ) and hydrogen sulfide (H 2 S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF 6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride species during nucleation. Density functional theory calculations additionally support the formation of these species as well as predicted metal oxide to fluoride conversion. Residual gas analysis revealed reaction by-products, and the combined experimental and computational results provided insights into proposed nucleation surface reactions. With additional ALD cycles, Fourier transform infrared spectroscopy indicated steady film growth after ∼13 cycles at 200 °C. XPS revealed that higher deposition temperatures resulted in a higher fraction of MoS 2 within the films. Deposition temperature was found to play an important role in film morphology with amorphous films obtained at 200 °C and below, while layered films with vertical platelets were observed at 250 °C. These results provide an improved understanding of MoS 2 nucleation, which can guide surface preparation for the deposition of few-layer films and advance MoS 2 toward integration into device manufacturing. 
    more » « less
  3. We report the growth of nanoscale hafnium dioxide (HfO2) and zirconium dioxide (ZrO2) thin films using remote plasma-enhanced atomic layer deposition (PE-ALD), and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using the HfO2 and ZrO2 thin films as the gate oxide. Tetrakis (dimethylamino) hafnium (Hf[N(CH3)2]4) and tetrakis (dimethylamino) zirconium (IV) (Zr[N(CH3)2]4) were used as the precursors, while O2 gas was used as the reactive gas. The PE-ALD-grown HfO2 and ZrO2 thin films were analyzed using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). The XPS measurements show that the ZrO2 film has the atomic concentrations of 34% Zr, 2% C, and 64% O while the HfO2 film has the atomic concentrations of 29% Hf, 11% C, and 60% O. The HRTEM and XRD measurements show both HfO2 and ZrO2 films have polycrystalline structures. n-channel and p-channel metal-oxide semiconductor field-effect transistors (nFETs and pFETs), CMOS inverters, and CMOS ring oscillators were fabricated to test the quality of the HfO2 and ZrO2 thin films as the gate oxide. Current-voltage (IV) curves, transfer characteristics, and oscillation waveforms were measured from the fabricated transistors, inverters, and oscillators, respectively. The experimental results measured from the HfO2 and ZrO2 thin films were compared. 
    more » « less
  4. Abstract

    New deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2V−1s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2V–1s–1and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐kgate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates.

     
    more » « less
  5. The use of flashlamp annealing as a low-temperature alternative or supplement to thermal annealing is investigated. Flashlamp annealing and thermal annealing were conducted on 100 nm thick indium tin oxide (ITO) films deposited on glass to compare the properties of films under different annealing methods. The ITO samples had an average initial sheet resistance of 50 Ω/sq. After flashlamp annealing, the sheet resistance was reduced to 33 Ω/sq only, while by thermal annealing at 210 °C for 30 min, a sheet resistance of 29 Ω/sq was achieved. Using a combination of flashlamp annealing and thermal annealing at 155 °C for 5 min, a sheet resistance of 29 Ω/sq was achieved. X-ray diffraction analysis confirmed that flashlamp annealing can be used to crystallize ITO. Flashlamp annealing allows for low-temperature crystallization of ITO on a time scale of 1–3 min. Through electrical and optical characterizations, it was determined that flashlamp annealing can achieve similar electrical and optical properties as thermal annealing. Flashlamp offers the method of low-temperature annealing, which is particularly suitable for temperature sensitive substrates.

     
    more » « less