With the rapid growth of online social media and ubiquitous Internet connectivity, social sensing has emerged as a new crowdsourcing application paradigm of collecting observations (often called claims) about the physical environment from humans or devices on their behalf. A fundamental problem in social sensing applications lies in effectively ascertaining the correctness of claims and the reliability of data sources without knowing either of them a priori, which is referred to as truth discovery. While significant progress has been made to solve the truth discovery problem, some important challenges have not been well addressed yet. First, existing truth discovery solutions did not fully solve the dynamic truth discovery problem where the ground truth of claims changes over time. Second, many current solutions are not scalable to large-scale social sensing events because of the centralized nature of their truth discovery algorithms. Third, the heterogeneity and unpredictability of the social sensing data traffic pose additional challenges to the resource allocation and system responsiveness. In this paper, we developed a Scalable Streaming Truth Discovery (SSTD) solution to address the above challenges. In particular, we first developed a dynamic truth discovery scheme based on Hidden Markov Models (HMM) to effectively infer the evolving truth of reported claims. We further developed a distributed framework to imple- ment the dynamic truth discovery scheme using Work Queue in HTCondor system. We also integrated the SSTD scheme with an optimal workload allocation mechanism to dynamically allocate the resources (e.g., cores, memories) to the truth discovery tasks based on their computation requirements. We evaluated SSTD through real world social sensing applications using Twitter data feeds. The evaluation results on three real-world data traces (i.e., Boston Bombing, Paris Shooting and College Football) show that the SSTD scheme is scalable and outperforms the state-of-the- art truth discovery methods in terms of both effectiveness and efficiency.
more »
« less
A survey on social-physical sensing: An emerging sensing paradigm that explores the collective intelligence of humans and machines
Propelled by the omnipresence of versatile data capture, communication, and computing technologies, physical sensing has revolutionized the avenue for decisively interpreting the real world. However, various limitations hinder physical sensing’s effectiveness in critical scenarios such as disaster response and urban anomaly detection. Meanwhile, social sensing is contriving as a pervasive sensing paradigm leveraging observations from human participants equipped with portable devices and ubiquitous Internet connectivity to perceive the environment. Despite its virtues, social sensing also inherently suffers from a few drawbacks (e.g., inconsistent reliability and uncertain data provenance). Motivated by the complementary strengths of the two sensing modes, social-physical sensing (SPS) is protruding as an emerging sensing paradigm that explores the collective intelligence of humans and machines to reconstruct the “state of the world,” both physically and socially. While a good number of interesting SPS applications have been studied, several critical unsolved challenges still exist in SPS. In this paper, we provide a comprehensive survey of SPS, emphasizing its definition, key enablers, state-of-the-art applications, potential research challenges, and roadmap for future work. This paper intends to bridge the knowledge gap of existing sensing-focused survey papers by thoroughly examining the various aspects of SPS crucial for building potent SPS systems.
more »
« less
- Award ID(s):
- 1845639
- PAR ID:
- 10515354
- Publisher / Repository:
- Collective Intelligence
- Date Published:
- Journal Name:
- Collective Intelligence
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2633-9137
- Page Range / eLocation ID:
- 263391372311708
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The advancement in deep learning and internet-of-things have led to diverse human sensing applications. However, distinct patterns in human sensing, influenced by various factors or contexts, challenge the generic neural network model's performance due to natural distribution shifts. To address this, personalization tailors models to individual users. Yet most personalization studies overlook intra-user heterogeneity across contexts in sensory data, limiting intra-user generalizability. This limitation is especially critical in clinical applications, where limited data availability hampers both generalizability and personalization. Notably, intra-user sensing attributes are expected to change due to external factors such as treatment progression, further complicating the challenges. To address the intra-user generalization challenge, this work introduces CRoP, a novel static personalization approach. CRoP leverages off-the-shelf pre-trained models as generic starting points and captures user-specific traits through adaptive pruning on a minimal sub-network while allowing generic knowledge to be incorporated in remaining parameters. CRoP demonstrates superior personalization effectiveness and intra-user robustness across four human-sensing datasets, including two from real-world health domains, underscoring its practical and social impact. Additionally, to support CRoP's generalization ability and design choices, we provide empirical justification through gradient inner product analysis, ablation studies, and comparisons against state-of-the-art baselines.more » « less
-
Integrated sensing and communication (ISAC) is considered an emerging technology for 6th-generation (6G) wireless and mobile networks. It is expected to enable a wide variety of vertical applications, ranging from unmanned aerial vehicles (UAVs) detection for critical infrastructure protection to physiological sensing for mobile healthcare. Despite its significant socioeconomic benefits, ISAC technology also raises unique challenges in system security and user privacy. Being aware of the security and privacy challenges, understanding the trade-off between security and communication performance, and exploring potential countermeasures in practical systems are critical to a wide adoption of this technology in various application scenarios. This talk will discuss various security and privacy threats in emerging ISAC systems with a focus on communication-centric ISAC systems, that is, using the cellular or WiFi infrastructure for sensing. We will then examine potential mechanisms to secure ISAC systems and protect user privacy at the physical and data layers under different sensing modes. At the wireless physical (PHY) layer, an ISAC system is subject to both passive and active attacks, such as unauthorized passive sensing, unauthorized active sensing, signal spoofing, and jamming. Potential countermeasures include wireless channel/radio frequency (RF) environment obfuscation, waveform randomization, anti-jamming communication, and spectrum/RF monitoring. At the data layer, user privacy could be compromised during data collection, sharing, storage, and usage. For sensing systems powered by artificial intelligence (AI), user privacy could also be compromised during the model training and inference stages. An attacker could falsify the sensing data to achieve a malicious goal. Potential countermeasures include the application of privacy enhancing technologies (PETs), such as data anonymization, differential privacy, homomorphic encryption, trusted execution, and data synthesis.more » « less
-
Energy-efficiency is a key concern in mobile sensing applications, such as those for tracking social interactions or physical activities. An attractive approach to saving energy is to shape the workload of the system by artificially introducing delays so that the workload would require less energy to process. However, adding delays to save energy may have a detrimental impact on user experience. To address this problem, we present Gratis, a novel paradigm for incorporating workload shaping energy optimizations in mobile sensing applications in an automated manner. Gratis adopts stream programs as a high-level abstraction whose execution is coordinated using an explicit power management policy. We present an expressive coordination language that can specify a broad range of workload-shaping optimizations. A unique property of the proposed power management policies is that they have predictable performance, which can be estimated at compile time, in a computationally efficient manner, from a small number of measurements. We have developed a simulator that can predict the energy with a average error of 7% and delay with a average error of 15%, even when applications have variable workloads. The simulator is scalable: hours of real-world traces can be simulated in a few seconds. Building on the simulator's accuracy and scalability, we have developed tools for configuring power management policies automatically. We have evaluated Gratis by developing two mobile applications and optimizing their energy consumption. For example, an application that tracks social interactions using speaker-identification techniques can run for only 7 hours without energy optimizations. However, when Gratis employs batching, scheduled concurrency, and adaptive sensing, the battery lifetime can be extended to 45 hours when the end-to-end deadline is one minute. These results demonstrate the efficacy of our approach to reduce energy consumption in mobile sensing applications.more » « less
-
Stress affects physical and mental health, and wearable devices have been widely used to detect daily stress through physiological signals. However, these signals vary due to factors such as individual differences and health conditions, making generalizing machine learning models difficult. To address these challenges, we present Human Heterogeneity Invariant Stress Sensing (HHISS), a domain generalization approach designed to find consistent patterns in stress signals by removing person-specific differences. This helps the model perform more accurately across new people, environments, and stress types not seen during training. Its novelty lies in proposing a novel technique called person-wise sub-network pruning intersection to focus on shared features across individuals, alongside preventing overfitting by leveraging continuous labels while training. The present study focuses on people with opioid use disorder (OUD)---a group where stress responses can change dramatically depending on the presents of opioids in their system, including daily timed medication for OUD (MOUD). Since stress often triggers cravings, a model that can adapt well to these changes could support better OUD rehabilitation and recovery. We tested HHISS on seven different stress datasets---four which we collected ourselves and three public datasets. Four are from lab setups, one from a controlled real-world driving setting, and two are from real-world in-the-wild field datasets with no constraints. The present study is the first known to evaluate how well a stress detection model works across such a wide range of data. Results show HHISS consistently outperformed state-of-the-art baseline methods, proving both effective and practical for real-world use. Ablation studies, empirical justifications, and runtime evaluations confirm HHISS's feasibility and scalability for mobile stress sensing in sensitive real-world applications.more » « less
An official website of the United States government

