skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Event-Based Sensing and Signal Processing in the Visual, Auditory, and Olfactory Domain: A Review
The nervous systems converts the physical quantities sensed by its primary receptors into trains of events that are then processed in the brain. The unmatched efficiency in information processing has long inspired engineers to seek brain-like approaches to sensing and signal processing. The key principle pursued in neuromorphic sensing is to shed the traditional approach of periodic sampling in favor of an event-driven scheme that mimicks sampling as it occurs in the nervous system, where events are preferably emitted upon the change of the sensed stimulus. In this paper we highlight the advantages and challenges of event-based sensing and signal processing in the visual, auditory and olfactory domains. We also provide a survey of the literature covering neuromorphic sensing and signal processing in all three modalities. Our aim is to facilitate research in event-based sensing and signal processing by providing a comprehensive overview of the research performed previously as well as highlighting conceptual advantages, current progress and future challenges in the field.  more » « less
Award ID(s):
2014217
PAR ID:
10523414
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers in Neural Circuits
Date Published:
Journal Name:
Frontiers in Neural Circuits
Volume:
15
ISSN:
1662-5110
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Neuromorphic computing, exemplified by breakthroughs in machine vision through concepts like address-event representation and send-on-delta sampling, has revolutionised sensor technology, enabling low-latency and high dynamic range perception with minimal bandwidth. While these advancements are prominent in vision and auditory perception, their potential in machine olfaction remains under-explored, particularly in the context of fast sensing. Here, we outline the perspectives for neuromorphic principles in machine olfaction. Considering the physical characteristics of turbulent odour environments, we argue that event-driven signal processing is optimally suited to the inherent properties of olfactory signals. We highlight the lack of bandwidth limitation due to turbulent dispersal processes, the characteristic temporal and chemical sparsity, as well as the high information density of the odour landscape. Further, we critically review and discuss the literature on neuromorphic olfaction; particularly focusing on neuromorphic principles such as event generation algorithms, information encoding mechanisms, event processing schemes (spiking neural networks), and learning. We discuss that the application of neuromorphic principles may significantly enhance response time and task performance in robotic olfaction, enabling autonomous systems to perform complex tasks in turbulent environments—such as environmental monitoring, odour guided search and rescue operations, and hazard detection. 
    more » « less
  2. Neuromorphic computing systems promise high energy efficiency and low latency. In particular, when integrated with neuromorphic sensors, they can be used to produce intelligent systems for a broad range of applications. An event‐based camera is such a neuromorphic sensor, inspired by the sparse and asynchronous spike representation of the biological visual system. However, processing the event data requires either using expensive feature descriptors to transform spikes into frames, or using spiking neural networks (SNNs) that are expensive to train. In this work, a neural network architecture is proposed, reservoir nodes‐enabled neuromorphic vision sensing network (RN‐Net), based on dynamic temporal encoding by on‐sensor reservoirs and simple deep neural network (DNN) blocks. The reservoir nodes enable efficient temporal processing of asynchronous events by leveraging the native dynamics of the node devices, while the DNN blocks enable spatial feature processing. Combining these blocks in a hierarchical structure, the RN‐Net offers efficient processing for both local and global spatiotemporal features. RN‐Net executes dynamic vision tasks created by event‐based cameras at the highest accuracy reported to date at one order of magnitude smaller network size. The use of simple DNN and standard backpropagation‐based training rules further reduces implementation and training costs. 
    more » « less
  3. Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics. 
    more » « less
  4. null (Ed.)
    Autonomous flight for large aircraft appears to be within our reach. However, launching autonomous systems for everyday missions still requires an immense interdisciplinary research effort supported by pointed policies and funding. We believe that concerted endeavors in the fields of neuroscience, mathematics, sensor physics, robotics, and computer science are needed to address remaining crucial scientific challenges. In this paper, we argue for a bio-inspired approach to solve autonomous flying challenges, outline the frontier of sensing, data processing, and flight control within a neuromorphic paradigm, and chart directions of research needed to achieve operational capabilities comparable to those we observe in nature. One central problem of neuromorphic computing is learning. In biological systems, learning is achieved by adaptive and relativistic information acquisition characterized by near-continuous information retrieval with variable rates and sparsity. This results in both energy and computational resource savings being an inspiration for autonomous systems. We consider pertinent features of insect, bat and bird flight behavior as examples to address various vital aspects of autonomous flight. Insects exhibit sophisticated flight dynamics with comparatively reduced complexity of the brain. They represent excellent objects for the study of navigation and flight control. Bats and birds enable more complex models of attention and point to the importance of active sensing for conducting more complex missions. The implementation of neuromorphic paradigms for autonomous flight will require fundamental changes in both traditional hardware and software. We provide recommendations for sensor hardware and processing algorithm development to enable energy efficient and computationally effective flight control. 
    more » « less
  5. In the Beyond Moore Law era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, the adoption of a wide variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber-resilience and processing prowess. The time is ripe to lay out a roadmap for unconventional computing with nanotechnologies to guide future research and this collection aims to fulfill that need. The authors provide a comprehensive roadmap for neuromorphic computing with electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets and assorted dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain inspired computing for incremental learning and solving problems in severely resource constrained environments. All of these approaches have advantages over conventional Boolean computing predicated on the von-Neumann architecture. With the computational need for artificial intelligence growing at a rate 50x faster than Moore law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon and this roadmap will aid in identifying future needs and challenges. 
    more » « less