Summary Uncertainty quantification for linear inverse problems remains a challenging task, especially for problems with a very large number of unknown parameters (e.g., dynamic inverse problems) and for problems where computation of the square root and inverse of the prior covariance matrix are not feasible. This work exploits Krylov subspace methods to develop and analyze new techniques for large‐scale uncertainty quantification in inverse problems. In this work, we assume that generalized Golub‐Kahan‐based methods have been used to compute an estimate of the solution, and we describe efficient methods to explore the posterior distribution. In particular, we use the generalized Golub‐Kahan bidiagonalization to derive an approximation of the posterior covariance matrix, and we provide theoretical results that quantify the accuracy of the approximate posterior covariance matrix and of the resulting posterior distribution. Then, we describe efficient methods that use the approximation to compute measures of uncertainty, including the Kullback‐Liebler divergence. We present two methods that use the preconditioned Lanczos algorithm to efficiently generate samples from the posterior distribution. Numerical examples from dynamic photoacoustic tomography demonstrate the effectiveness of the described approaches.
more »
« less
Uncertainty quantification for goal-oriented inverse problems via variational encoder-decoder networks
Abstract In this work, we describe a new approach that uses variational encoder-decoder (VED) networks for efficient uncertainty quantification forgoal-orientedinverse problems. Contrary to standard inverse problems, these approaches are goal-oriented in that the goal is to estimate some quantities of interest (QoI) that are functions of the solution of an inverse problem, rather than the solution itself. Moreover, we are interested in computing uncertainty metrics associated with the QoI, thus utilizing a Bayesian approach for inverse problems that incorporates the prediction operator and techniques for exploring the posterior. This may be particularly challenging, especially for nonlinear, possibly unknown, operators and nonstandard prior assumptions. We harness recent advances in machine learning, i.e. VED networks, to describe a data-driven approach to large-scale inverse problems. This enables a real-time uncertainty quantification for the QoI. One of the advantages of our approach is that we avoid the need to solve challenging inversion problems by training a network to approximate the mapping from observations to QoI. Another main benefit is that we enable uncertainty quantification for the QoI by leveraging probability distributions in the latent and target spaces. This allows us to efficiently generate QoI samples and circumvent complicated or even unknown forward models and prediction operators. Numerical results from medical tomography reconstruction and nonlinear hydraulic tomography demonstrate the potential and broad applicability of the approach.
more »
« less
- PAR ID:
- 10515413
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 40
- Issue:
- 7
- ISSN:
- 0266-5611
- Format(s):
- Medium: X Size: Article No. 075010
- Size(s):
- Article No. 075010
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The inverse problem for radiative transfer is important in many applications, such as optical tomography and remote sensing. Major challenges include large memory requirements and computational expense, which arise from high-dimensionality and the need for iterations in solving the inverse problem. Here, to alleviate these issues, we propose adaptive-mesh inversion: a goal-orientedhp-adaptive mesh refinement method for solving inverse radiative transfer problems. One novel aspect here is that the two optimizations (one for inversion, and one for mesh adaptivity) are treated simultaneously and blended together. By exploiting the connection between duality-based mesh adaptivity and adjoint-based inversion techniques, we propose a goal-oriented error estimator, which is cheap to compute, and can efficiently guide the mesh-refinement to numerically solve the inverse problem. We use discontinuous Galerkin spectral element methods to discretize the forward and the adjoint problems. Then, based on the goal-oriented error estimator, we propose anhp-adaptive algorithm to refine the meshes. Numerical experiments are presented at the end and show convergence speed-up and reduced memory occupation by the goal-oriented mesh adaptive method.more » « less
-
Abstract We introduce the concept of decision‐focused surrogate modeling for solving computationally challenging nonlinear optimization problems in real‐time settings. The proposed data‐driven framework seeks to learn a simpler, for example, convex, surrogate optimization model that is trained to minimize thedecision prediction error, which is defined as the difference between the optimal solutions of the original and the surrogate optimization models. The learning problem, formulated as a bilevel program, can be viewed as a data‐driven inverse optimization problem to which we apply a decomposition‐based solution algorithm from previous work. We validate our framework through numerical experiments involving the optimization of common nonlinear chemical processes such as chemical reactors, heat exchanger networks, and material blending systems. We also present a detailed comparison of decision‐focused surrogate modeling with standard data‐driven surrogate modeling methods and demonstrate that our approach is significantly more data‐efficient while producing simple surrogate models with high decision prediction accuracy.more » « less
-
Mariño, Inés P. (Ed.)In many physiological systems, real-time endogeneous and exogenous signals in living organisms provide critical information and interpretations of physiological functions; however, these signals or variables of interest are not directly accessible and must be estimated from noisy, measured signals. In this paper, we study an inverse problem of recovering gas exchange signals of animals placed in a flow-through respirometry chamber from measured gas concentrations. For large-scale experiments (e.g., long scans with high sampling rate) that have many uncertainties (e.g., noise in the observations or an unknown impulse response function), this is a computationally challenging inverse problem. We first describe various computational tools that can be used for respirometry reconstruction and uncertainty quantification when the impulse response function is known. Then, we address the more challenging problem where the impulse response function is not known or only partially known. We describe nonlinear optimization methods for reconstruction, where both the unknown model parameters and the unknown signal are reconstructed simultaneously. Numerical experiments show the benefits and potential impacts of these methods in respirometry.more » « less
-
We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximuma posterioriprobability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.more » « less
An official website of the United States government
