This theory paper focuses on understanding how mastery learning has been implemented in undergraduate engineering courses through a systematic review. Academic environments that promote learning, mastery, and continuous improvement rather than inherent ability can promote performance and persistence. Scholarship has argued that students could achieve mastery of the course material when the time available to master concepts and the quality of instruction was made appropriate to each learner. Increasing time to demonstrate mastery involves a course structure that allows for repeated attempts on learning assessments (i.e., homework, quizzes, projects, exams). Students are not penalized for failed attempts but are rewarded for achieving eventual mastery. The mastery learning approach recognizes that mastery is not always achieved on first attempts and learning from mistakes and persisting is fundamental to how we learn. This singular concept has potentially the greatest impact on students’ mindset in terms of their belief they can be successful in learning the course material. A significant amount of attention has been given to mastery learning courses in secondary education and mastery learning has shown an exceptionally positive effect on student achievement. However, implementing mastery learning in an undergraduate course can be a cumbersome process as it requires instructors to significantly restructure their assignments and exams, evaluation process, and grading practices. In light of these challenges, it is unclear the extent to which mastery learning has been implemented in undergraduate engineering courses or if similar positive effects can be found. Therefore, we conducted a systematic review to elucidate, how in the U.S., (1) has mastery learning been implemented in undergraduate engineering courses from 1990 to the present time and (2) the student outcomes that have been reported for these implementations. Using the systematic process outlined by Borrego et al. (2014), we surveyed seven databases and a total of 584 articles consisting of engineering and non-engineering courses were identified. We focused our review on studies that were centered on applying the mastery learning pedagogical method in undergraduate engineering courses. All peer-reviewed and practitioner articles and conference proceedings that were within our scope were included in the synthetization phase of the review. Most articles were excluded based on our inclusion and exclusion criteria. Twelve studies focused on applying mastery learning to undergraduate engineering courses. The mastery learning method was mainly applied on midterm exams, few studies used the method on homework assignments, and no study applied the method to the final exam. Students reported an increase in learning as a result of applying mastery learning. Several studies reported that students’ grades in a traditional final exam were not affected by mastery learning. Students’ self-reported evaluation of the course suggests that students prefer the mastery learning approach over traditional methods. Although a clear consensus on the effect of the mastery learning approach could not be achieved as each article applied different survey instruments to capture students’ perspectives. Responses to open-ended questions have mixed results. Two studies report more positive student comments on opened-ended questions, while one study report receiving more negative comments regarding the implementation of the mastery learning method. In the full paper we more thoroughly describe the ways in which mastery learning was implemented along with clear examples of common and divergent student outcomes across the twelve studies.
more »
« less
Toward Asset-based Instruction and Assessment in Artificial Intelligence in Education
The artificial intelligence in education (AIED) community has produced technologies that are widely used to support learning, teaching, assessment, and administration. This work has successfully enhanced test scores, course grades, skill acquisition, comprehension, engagement, and related outcomes. However, the prevailing approach to adaptive and personalized learning has two main steps. First, the process involves detecting the areas of knowledge and competencies where students are deficient. This process also identifies when or how a student is considered “at risk” or in some way “lacking.” Second, the approach involves providing timely, individualized assistance to address these deficiencies. However, a considerable body of research outside our field has established that such deficit framing, by itself, leads to reactive and less productive strategies. In deficit-based frameworks, powerful student strengths, skills, and schemas—their assets—are not explicitly leveraged...
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10515568
- Publisher / Repository:
- Springer New York
- Date Published:
- Journal Name:
- International Journal of Artificial Intelligence in Education
- ISSN:
- 1560-4292
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Individual differences have been recognized as an important factor in the learning process. However, there are few successes in using known dimensions of individual differences in solving an important problem of predicting student performance and engagement in online learning. At the same time, learning analytics research has demonstrated that the large volume of learning data collected by modern e-learning systems could be used to recognize student behavior patterns and could be used to connect these patterns with measures of student performance. Our paper attempts to bridge these two research directions. By applying a sequence mining approach to a large volume of learner data collected by an online learning system, we build models of student learning behavior. However, instead of following modern work on behavior mining (i.e., using this behavior directly for performance prediction tasks), we attempt to follow traditional work on modeling individual differences in quantifying this behavior on a latent data-driven personality scale. Our research shows that this data-driven model of individual differences performs significantly better than several traditional models of individual differences in predicting important parameters of the learning process, such as success and engagement.more » « less
-
Lamberg, T; Moss, D (Ed.)We examine the potential for instructor-led student interview in disrupting narratives about minoritized university students and their families. This approach was inspired by a critical component of the original Funds of Knowledge for Teaching project (FoK), the home visit, which involved ethnographic interviews with students and their family to learn about their lives. Study group reflections with project teachers and researchers led to the teachers’ examination of biases and disruption of deficit stories about students and their families (Tenery, 2005). Two frameworks guided the design and the analysis of the study. The anti-deficit framework for students from minoritized groups (Adiredja, 2019) prioritizes unpacking students’ existing understandings and resources for learning, and explicitly constructing counter-stories about students and their mathematics. The study also interprets the results of the study from a socioecological perspective (Louie & Zhan, 2022). Story construction is attributed to the individual, the learning community they are in, and the broader societal context. The data comes from a larger project focusing on engaging university instructors in community learning project focusing on race, gender, and mathematics (NSF DUE 2021313 IUSE). The project began in the summer and the interview occurred in the following Spring. Six participants interviewed a student of their choice, and four attended a follow-up debrief meeting. Results showed that participants gained novel insights into their students’ lives. The focal case, Zaynah shows that the interview can also change an instructor’s deficit story about a student and their mathematics into an anti-deficit story. Zaynah’s post-interview description of her student, Maria, went from someone who had “weak algebra skills” and was “just kind ofthere,” to a student who had a well-researched and articulated academic and life goals, and a “passion” that Zaynah “knew nothing about.” Zaynah accepted that math “wasn’t [Maria’s] thing,” and that “she can and will do the math” to achieve those goals. The anti-deficit framework and the socio-ecological perspective rejected a simple narrative of a deficit-oriented instructor who changed after the interview experience. Zaynah is not a deficit-oriented instructor. Her description of her other students in the workshop—all women of color— were positive, with no mention of deficits. Instead, it is a more complex story of the interplay of narratives about mathematics and students of color, and the impact of the interview with a student and the role of the community in shifting deficit stories. It is showing promise of applying FoK project’s core principles in undergraduate mathematics beyond curriculum design.more » « less
-
Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who were overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments.more » « less
-
Cook, S; Katz, B; Moore-Russo, D (Ed.)In this report, we share the design of a year-long professional development program for university math instructors that we developed and refined as the Anti-deficit Learning and Teaching Project (Adelante). The program is a community learning project wherein minoritized students, STEM peer mentors, and math instructors (graduate students and instructional faculty) build relationships as they share their knowledge and experiences with race, gender, and mathematics. Culturally relevant pedagogy (Ladson-Billing, 1995) frames the goals of the community learning in terms of deep mathematical knowledge, cultural knowledge, and sociopolitical consciousness. The program activities are inspired by the Funds of Knowledge for Teaching project (Moll et al., 1992) wherein teachers are offered opportunities to build meaningful relationships with students and their communities. An anti-deficit perspective (Adiredja et al., 2020) guides the learning experience for all participants. Not only are minoritized students assumed to have cultural and intellectual assets for learning, but the project also aims to dismantle deficit master narratives (Solórzano & Yosso, 2002) about these students and their capacity to learn. Instructors worked on explicitly challenging deficit narratives about their students as they engaged in the program’s activities. The project also takes an anti-deficit approach to instructor development, focusing on their individual growth and agency, joy in teaching, and mental health. We also position ourselves as learners to the experience and wisdom of the staff and students at the university cultural centers. The core activities for the PD engage teachers to: (a) participate in five PD meetings on anti- deficit teaching and Inquiry Based Learning (IBL) teaching method; (b) lead a five-day math summer bridge workshop in Pre-Calculus, Calculus I, II, Vector Calculus, or Linear Algebra immediately following the meetings; (c) participate in critical conversations about race and gender in STEM with students at the cultural centers; (d) conduct a semi-structure interview with one of their students from the summer workshop about their STEM experience; and (e) participate in group reflection meetings debriefing their experience in the activities. Preliminary analysis of two of the three cohorts of participants found that most instructors developed a more humanizing approach to their teaching and their students (Gutiérrez, 2018). IBL helped instructors to explicitly challenge deficit narratives about minoritized students in the classroom, wherein most observed their students engaging in deep mathematical reasoning. Interviewing one of their students also shifted deficit narratives that developed in the classroom for some instructors. The workshop served as a space to try out previously learned teaching ideas (student centered teaching) without constraints from curriculum and assessments. Doing so reinvigorated many instructors’ passion for teaching, especially those who are more experienced.more » « less
An official website of the United States government

