Alzheimer’s disease (AD) includes the formation of extracellular deposits comprising aggregated β-amyloid (Aβ) fibers associated with oxidative stress, inflammation, mitochondrial abnormalities, and neuronal loss. There is an associative link between AD and cardiac diseases; however, the mechanisms underlying the potential role of AD, particularly Aβ in cardiac cells, remain unknown. Here, we investigated the role of mitochondria in mediating the effects of Aβ1-40 and Aβ1-42 in cultured cardiomyocytes and primary coronary endothelial cells. Our results demonstrated that Aβ1-40 and Aβ1-42 are differently accumulated in cardiomyocytes and coronary endothelial cells. Aβ1-42 had more adverse effects than Aβ1-40 on cell viability and mitochondrial function in both types of cells. Mitochondrial and cellular ROS were significantly increased, whereas mitochondrial membrane potential and calcium retention capacity decreased in both types of cells in response to Aβ1-42. Mitochondrial dysfunction induced by Aβ was associated with apoptosis of the cells. The effects of Aβ1-42 on mitochondria and cell death were more evident in coronary endothelial cells. In addition, Aβ1-40 and Aβ1-42 significantly increased Ca2+ -induced swelling in mitochondria isolated from the intact rat hearts. In conclusion, this study demonstrates the toxic effects of Aβ on cell survival and mitochondria function in cardiac cells.
more »
« less
The associations between type 2 diabetes and plasma biomarkers of Alzheimer’s disease in the Health and Aging Brain Study: Health Disparities (HABS-HD)
Alzheimer’s disease (AD) affects Latinos disproportionately. One of the reasons underlying this disparity may be type 2 diabetes (T2D) that is a risk factor for AD. The purpose of this study was to examine the associations of T2D and AD blood biomarkers and the differences in these associations between Mexican Americans and non-Hispanic Whites. This study was a secondary analysis of baseline data from the observational Health and Aging Brain Study: Health Disparities (HABS-HD) that investigated factors underlying health disparities in AD in Mexican Americans in comparison to non-Hispanic Whites. HABS-HD participants were excluded if they had missing data or were large outliers (z-scores >|4|) on a given AD biomarker. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels were measured from clinical labs. T2D was diagnosed by licensed clinicians. Plasma amyloid-beta 42 and 40 (Aβ42/42) ratio, total tau (t-tau), and neurofilament light (NfL) were measured via ultra-sensitive Simoa assays. The sample sizes were 1,552 for Aβ42/40ratio, 1,570 for t-tau, and 1,553 for NfL. Mexican Americans were younger (66.6±8.7 vs. 69.5±8.6) and had more female (64.9% female vs. 55.1%) and fewer years of schooling (9.5±4.6 vs. 15.6±2.5) than non-Hispanic Whites. Mexican Americans differed significantly from non-Hispanic Whites in blood glucose (113.5±36.6 vs. 99.2±17.0) and HbA1c (6.33±1.4 vs. 5.51±0.6) levels, T2D diagnosis (35.3% vs. 11.1%), as well as blood Aβ42/40ratio (.051±.012 vs. .047±.011), t-tau (2.56±.95 vs. 2.33±.90), and NfL levels (16.3±9.5 vs. 20.3±10.3). Blood glucose, blood HbA1c, and T2D diagnosis were not related to Aβ42/40ratio and t-tau but explained 3.7% of the variation in NfL (p< .001). Blood glucose and T2D diagnosis were not, while HbA1c was positively (b= 2.31,p< .001,β =0.26), associated with NfL among Mexican Americans. In contrast, blood glucose, HbA1c, and T2D diagnosis were negatively (b =-0.09,p< .01,β =-0.26), not (b =0.34,p= .71,β =0.04), and positively (b= 3.32,p< .01,β =0.33) associated with NfL, respectively in non-Hispanic Whites. To conclude, blood glucose and HbA1c levels and T2D diagnosis are associated with plasma NfL levels, but not plasma Aβ and t-tau levels. These associations differ in an ethnicity-specific manner and need to be further studied as a potential mechanism underlying AD disparities.
more »
« less
- Award ID(s):
- 2231874
- PAR ID:
- 10515593
- Editor(s):
- Bello-Chavolla, Omar Yaxmehen
- Publisher / Repository:
- PLOS ONE
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0295749
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neuroimaging and biofluid biomarkers provide a proxy of pathological changes for Alzheimer’s disease (AD) and are useful in improving diagnosis and assessing disease progression. However, it is not clear how race/ethnicity and different prevalence of AD risks impact biomarker levels. In this narrative review, we survey studies focusing on comparing biomarker differences between non-Hispanic White American(s) (NHW), African American(s) (AA), Hispanic/Latino American(s) (HLA), and Asian American(s) with normal cognition, mild cognitive impairment, and dementia. We found no strong evidence of racial and ethnic differences in imaging biomarkers after controlling for cognitive status and cardiovascular risks. For biofluid biomarkers, in AA, higher levels of plasma Aβ42/Aβ40, and lower levels of CSF total tau and p-tau 181, were observed after controlling for APOE status and comorbidities compared to NHW. Examining the impact of AD risks and comorbidities on biomarkers and their contributions to racial/ethnic differences in cognitive impairment are critical to interpreting biomarkers, understanding their generalizability, and eliminating racial/ethnic health disparities.more » « less
-
Alzheimer’s disease (AD) is characterized by distinct tissue changes associated with accumulation of extracellular amyloid-beta (Aβ) peptides, and intracellular deposits of phosphorylated Tau (p-tau). There is a clear need to develop 3D AD model for alternative to animal test since current rodent model does not recapitulate complex human AD physiopathology. Here we report on organoid-grafted neurovascular unit (NUV) using 1) spheroid using APP-mutated neuro-progenitor cell and 2) endothelial-based blood brain barrier (BBB) against extracellular matrix. The construct was validated with AD pathology generation and further treatment with β- or γ-secretase inhibitors shows the decrease of Aβ. This paper demonstrates the potential utility of a membrane-free in vitro cortical spheroid tissue construct with BBB in a high throughput platform to model AD.more » « less
-
OBJECTIVETo determine the benefit of starting continuous glucose monitoring (CGM) in adult-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) with regard to longer-term glucose control and serious clinical events. RESEARCH DESIGN AND METHODSA retrospective observational cohort study within the Veterans Affairs Health Care System was used to compare glucose control and hypoglycemia- or hyperglycemia-related admission to an emergency room or hospital and all-cause hospitalization between propensity score overlap weighted initiators of CGM and nonusers over 12 months. RESULTSCGM users receiving insulin (n = 5,015 with T1D and n = 15,706 with T2D) and similar numbers of nonusers were identified from 1 January 2015 to 31 December 2020. Declines in HbA1c were significantly greater in CGM users with T1D (−0.26%; 95% CI −0.33, −0.19%) and T2D (−0.35%; 95% CI −0.40, −0.31%) than in nonusers at 12 months. Percentages of patients achieving HbA1c <8 and <9% after 12 months were greater in CGM users. In T1D, CGM initiation was associated with significantly reduced risk of hypoglycemia (hazard ratio [HR] 0.69; 95% CI 0.48, 0.98) and all-cause hospitalization (HR 0.75; 95% CI 0.63, 0.90). In patients with T2D, there was a reduction in risk of hyperglycemia in CGM users (HR 0.87; 95% CI 0.77, 0.99) and all-cause hospitalization (HR 0.89; 95% CI 0.83, 0.97). Several subgroups (based on baseline age, HbA1c, hypoglycemic risk, or follow-up CGM use) had even greater responses. CONCLUSIONSIn a large national cohort, initiation of CGM was associated with sustained improvement in HbA1c in patients with later-onset T1D and patients with T2D using insulin. This was accompanied by a clear pattern of reduced risk of admission to an emergency room or hospital for hypoglycemia or hyperglycemia and of all-cause hospitalization.more » « less
-
Amyloid formation and microbial infection are the two common pathological causes of neurogenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). While significant efforts have been made to develop different prevention strategies and preclinical hits for these diseases, conventional design strategies of amyloid inhibitors are mostly limited to either a single prevention mechanism (amyloid cascade vs. microbial infection) or a single amyloid protein (Aβ, hIAPP, or hCT), which has prevented the launch of any successful drug on the market. Here, we propose and demonstrate a new “anti-amyloid and anti-bacteria” strategy to repurpose two intestinal defensins, human α-defensin 6 (HD-6) and human β-defensin 1 (HBD-1), as multiple-target, dual-function, amyloid inhibitors. Both HD-6 and HBD-1 can cross-seed with three amyloid peptides, Aβ (associated with AD), hIAPP (associated with T2D), and hCT (associated with MTC), to prevent their aggregation towards amyloid fibrils from monomers and oligomers, rescue SH-SY5Y and RIN-m5F cells from amyloid-induced cytotoxicity, and retain their original antimicrobial activity against four common bacterial strains at sub-stoichiometric concentrations. Such sequence-independent anti-amyloid and anti-bacterial functions of intestinal defensins mainly stem from their cross-interactions with amyloid proteins through amyloid-like mimicry of β-sheet associations. In a broader view, this work provides a new out-of-the-box thinking to search and repurpose a huge source of antimicrobial peptides as amyloid inhibitors, allowing the blocking of the two interlinked pathological pathways and bidirectional communication between the central nervous system and intestines via the gut–brain axis associated with neurodegenerative diseases.more » « less
An official website of the United States government

