- Award ID(s):
- 2239880
- NSF-PAR ID:
- 10515760
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Geoscience and Remote Sensing
- Volume:
- 61
- ISSN:
- 0196-2892
- Page Range / eLocation ID:
- 1 to 11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Real-time and accurate precipitation estimation is critical for environmental protection and water resources management. Compared to traditional methods, i.e., radar reflectivity (Z) and rainfall rate (R) relations, relying on local raindrop size distributions, the deep learning model can fit the functional relationship between radar observations and rainfall rate measurements. However, the black-box nature of deep learning models makes it difficult to explain the physical mechanisms behind their results. To address this problem, this study proposes DQPENet, a deep learning model for polarimetric radar QPE utilizing dense blocks. We employ a permutation test to understand the relative importance of different radar data input variables. Additionally, we propose a regression importance value (RIV) method for the precipitation estimation task to visualize feature importance regions. Our experimental results show that radar reflectivity and specific differential phase at the lowest elevation angle are the two most important observables for the model’s precipitation estimation. Furthermore, we find that radar data closer to the rain gauge are more influential on the model’s results, indicating that the deep learning model is able to capture the underlying physical mechanism of atmospheric data.more » « less
-
Abstract Machine learning‐based approaches demonstrate a significant potential in radar quantitative precipitation estimation (QPE) applications. In contrast to conventional methods that depend on local raindrop size distributions, deep learning (DL) can establish an effective mapping from three‐dimensional radar observations to ground rain rates. However, the lack of transparency in DL models poses challenges toward understanding the underlying physical mechanisms that drive their outcomes. This study aims to develop a DL‐based QPE system and provide a physical explanation of radar precipitation estimation process. This research is designed by employing a deep neural network consisting of two modules. The first module is a quantitative precipitation estimation network that has the capability to learn precipitation patterns and spatial distribution from multidimensional polarimetric radar observations. The second module introduces a quantitative precipitation estimation shapley additive explanations method to quantify the influence of each radar observable on the model estimate across various precipitation intensities.
-
Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.
-
Abstract Radar accuracy in estimating qualitative precipitation estimation at distances larger than 120 km degrades rapidly because of increased volume coverage and beam height. The performance of the recently upgraded dual‐polarized technology to the NEXRAD network and its capabilities are in need of further examination, as improved rainfall estimates at large distances would allow for significant hydrological modelling improvements. Parameter based methods were applied to radars from St. Louis (KLSX) and Kansas City (KEAX), Missouri, USA, to test the precision and accuracy of both dual‐ and single‐polarized parameter estimations of precipitation at large distances. Hourly aggregated precipitation data from terrestrial‐based tipping buckets provided ground‐truthed reference data. For all KLSX data tested, an R(Z,ZDR) algorithm provided the smallest absolute error (3.7 mm h−1) and root‐mean‐square‐error (45%) values. For most KEAX data, R(ZDR,KDP) and R(KDP) algorithms performed best, with RMSE values of 37%. With approximately 100 h of precipitation data between April and October of 2014, nearly 800 and 400 mm of precipitation were estimated by radar precipitation algorithms but was not observed by terrestrial‐based precipitation gauges for KLSX and KEAX, respectively. Additionally, nearly 30 and 190 mm of measured precipitation observed by gauges were not detected by the radar rainfall estimates from KLSX and KEAX, respectively. Results improve understanding of radar based precipitation estimates from long ranges thereby advancing applications for hydrometeorological modelling and flood forecasting. Copyright © 2016 John Wiley & Sons, Ltd.
-
Abstract Raindrop size distributions (DSD) and rain rate have been estimated from polarimetric radar data using different approaches with the accuracy depending on the errors both in the radar measurements and the estimation methods. Herein, a deep neural network (DNN) technique was utilized to improve the estimation of the DSD and rain rate by mitigating these errors. The performance of this approach was evaluated using measurements from a two-dimensional video disdrometer (2DVD) at the Kessler Atmospheric and Ecological Field Station in Oklahoma as ground truth with the results compared against conventional estimation methods for the period 2006–17. Physical parameters (mass-/volume-weighted diameter and liquid water content), rain rate, and polarimetric radar variables (including radar reflectivity and differential reflectivity) were obtained from the DSD data. Three methods—physics-based inversion, empirical formula, and DNN—were applied to two different temporal domains (instantaneous and rain-event average) with three diverse error assumptions (fitting, measurement, and model errors). The DSD retrievals and rain estimates from 18 cases were evaluated by calculating the bias and root-mean-squared error (RMSE). DNN produced the best performance for most cases, with up to a 5% reduction in RMSE when model errors existed. DSD and rain estimated from a nearby polarimetric radar using the empirical and DNN methods were well correlated with the disdrometer observations; the rain-rate estimate bias of the DNN was significantly reduced (3.3% in DNN vs 50.1% in empirical). These results suggest that DNN has advantages over the physics-based and empirical methods in retrieving rain microphysics from radar observations.