skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing Self-sustaining IoT Systems with Autonomous and Smart UAV Data Ferry
The emerging unmanned aerial vehicle (UAV) such as a quadcopter offers a reliable, controllable, and flexible way of ferrying information from energy harvesting powered IoT devices in remote areas to the IoT edge servers. Nonetheless, the employment of UAVs faces a major challenge which is the limited fly range due to the necessity for recharging, especially when the charging stations are situated at considerable distances from the monitoring area, resulting in inefficient energy usage. To mitigate these challenges, we proposed to place multiple charging stations in the field and each is equipped with a powerful energy harvester and acting as a cluster head to collect data from the sensor node under its jurisdiction. In this way, the UAV can remain in the field continuously and get the data while charging. However, the intermittent and unpredictable nature of energy harvesting can render stale or even obsolete information stored at cluster heads. To tackle this issue, in this work, we proposed a Deep Reinforcement Learning (DRL) based path planning for UAVs. The DRL agent will gather the global information from the UAV to update its input environmental states for outputting the location of the next stop to optimize the overall age of information of the whole network. The experiments show that the proposed DDQN can significantly reduce the age of information (AoI) by 3.7% reliably compared with baseline techniques.  more » « less
Award ID(s):
2348818
PAR ID:
10515844
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
International Symposium on Quality Electronic Design (ISQED)
ISBN:
979-8-3503-0927-0
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In urban environments, tall buildings or structures can pose limits on the direct channel link between a base station (BS) and an Internet-of-Thing device (IoTD) for wireless communication. Unmanned aerial vehicles (UAVs) with a mounted reconfigurable intelligent surface (RIS), denoted as UAV-RIS, have been introduced in recent works to enhance the system throughput capacity by acting as a relay node between the BS and the IoTDs in wireless access networks. Uncoordinated UAVs or RIS phase shift elements will make unnecessary adjustments that can significantly impact the signal transmission to IoTDs in the area. The concept of age of information (AoI) is proposed in wireless network research to categorize the freshness of the received update message. To minimize the average sum of AoI (ASoA) in the network, two model-free deep reinforcement learning (DRL) approaches – Off-Policy Deep Q-Network (DQN) and On-Policy Proximal Policy Optimization (PPO) – are developed to solve the problem by jointly optimizing the RIS phase shift, the location of the UAV-RIS, and the IoTD transmission scheduling for large-scale IoT wireless networks. Analysis of loss functions and extensive simulations is performed to compare the stability and convergence performance of the two algorithms. The results reveal the superiority of the On-Policy approach, PPO, over the Off-Policy approach, DQN, in terms of stability, convergence speed, and under diverse environment settings 
    more » « less
  2. Unmanned aerial vehicles (UAVs) have various applications in different settings, including e.g., surveillance, packet delivery, emergency response, data collection in the Internet of Things (IoT), and connectivity in cellular networks. However, this technology comes with many risks and challenges such as vulnerabilities to malicious cyber-physical attacks. This paper studies the problem of path planning for UAVs under GPS sensor permanent faults in a cyber-physical system (CPS) perspective. Based on studying and analyzing the CPS architecture of the UAV, the cyber “attacks and threats” are differentiated from attacks on sensors and communication components. An efficient way to address this problem is to introduce a novel approach for UAV’s path planning resilience to GPS permanent faults artificial potential field algorithm (RCA-APF). The proposed algorithm completes the three stages in a coordinated manner. In the first stage, the permanent faults on the GPS sensor of the UAV are detected, and the UAV starts to divert from its initial path planning. In the second stage, we estimated the location of the UAV under GPS permanent fault using Received Signal Strength (RSS) trilateration localization approach. In the final stage of the algorithm, we implemented the path planning of the UAV using an open-source UAV simulator. Experimental and simulation results demonstrate the performance of the algorithm and its effectiveness, resulting in efficient path planning for the UAV. 
    more » « less
  3. Deploying unmanned aerial vehicle (UAV) mounted base stations with a renewable energy charging infrastructure in a temporary event (e.g., sporadic hotspots for light reconnaissance mission or disaster-struck areas where regular power-grid is unavailable) provides a responsive and cost-effective solution for cellular networks. Nevertheless, the energy constraint incurred by renewable energy (e.g., solar panel) imposes new challenges on the recharging coordination. The amount of available energy at a charging station (CS) at any given time is variable depending on: the time of day, the location, sunlight availability, size and quality factor of the solar panels used, etc. Uncoordinated UAVs make redundant recharging attempts and result in severe quality of service (QoS) degradation. The system stability and lifetime depend on the coordination between the UAVs and available CSs. In this paper, we develop a reinforcement learning time-step based algorithm for the UAV recharging scheduling and coordination using a Q-Learning approach. The agent is considered a central controller of the UAVs in the system, which uses the ϵ -greedy based action selection. The goal of the algorithm is to maximize the average achieved throughput, reduce the number of recharging occurrences, and increase the life-span of the network. Extensive simulations based on experimentally validated UAV and charging energy models reveal that our approach exceeds the benchmark strategies by 381% in system duration, 47% reduction in the number of recharging occurrences, and achieved 66% of the performance in average throughput compared to a power-grid based infrastructure where there are no energy limitations on the CSs. 
    more » « less
  4. Unmanned aerial vehicle (UAV) technology is a rapidly growing field with tremendous opportunities for research and applications. To achieve true autonomy for UAVs in the absence of remote control, external navigation aids like global navigation satellite systems and radar systems, a minimum energy trajectory planning that considers obstacle avoidance and stability control will be the key. Although this can be formulated as a constrained optimization problem, due to the complicated non-linear relationships between UAV trajectory and thrust control, it is almost impossible to be solved analytically. While deep reinforcement learning is known for its ability to provide model free optimization for complex system through learning, its state space, actions and reward functions must be designed carefully. This paper presents our vision of different layers of autonomy in a UAV system, and our effort in generating and tracking the trajectory both using deep reinforcement learning (DRL). The experimental results show that compared to conventional approaches, the learned trajectory will need 20% less control thrust and 18% less time to reach the target. Furthermore, using the control policy learning by DRL, the UAV will achieve 58.14% less position error and 21.77% less system power. 
    more » « less
  5. As the next-generation battery substitute for IoT system, energy harvesting (EH) technology revolutionizes the IoT industry with environmental friendliness, ubiquitous accessibility, and sustainability, which enables various self-sustaining IoT applications. However, due to the weak and intermittent nature of EH power, the performance of EH-powered IoT systems as well as its collaborative routing mechanism can severely deteriorate, rendering unpleasant data package loss during each power failure. Such a phenomenon makes conventional routing policies and energy allocation strategies impractical. Given the complexity of the problem, reinforcement learning (RL) appears to be one of the most promising and applicable methods to address this challenge. Nevertheless, although the energy allocation and routing policy are jointly optimized by the RL method, due to the energy restriction of EH devices, the inappropriate configuration of multi-hop network topology severely degrades the data collection performance. Therefore, this article first conducts a thorough mathematical discussion and develops the topology design and validation algorithm under energy harvesting scenarios. Then, this article developsDeepIoTRouting, a distributed and scalable deep reinforcement learning (DRL)-based approach, to address the routing and energy allocation jointly for the energy harvesting powered distributed IoT system. The experimental results show that with topology optimization,DeepIoTRoutingachieves at least 38.71% improvement on the amount of data delivery to sink in a 20-device IoT network, which significantly outperforms state-of-the-art methods. 
    more » « less