Abstract The ocean coastal‐shelf‐slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea‐ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea‐ice, and biogeochemistry model (MITgcm‐REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea‐ice and ocean color, and research ship surveys from the Palmer Long‐Term Ecological Research (LTER) program. The simulations suggest that the annual sea‐ice cycle has an important role in the seasonal DIC drawdown. In years of early sea‐ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea‐ice retreat show larger DIC drawdown, attributed to lower air‐sea CO2fluxes and increased dilution by sea‐ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.
more »
« less
Remote sensing of sea surface glacial meltwater on the Antarctic Peninsula shelf
Glacial meltwater is an important environmental variable for ecosystem dynamics along the biologically productive Western Antarctic Peninsula (WAP) shelf. This region is experiencing rapid change, including increasing glacial meltwater discharge associated with the melting of land ice. To better understand the WAP environment and aid ecosystem forecasting, additional methods are needed for monitoring and quantifying glacial meltwater for this remote, sparsely sampled location. Prior studies showed that sea surface glacial meltwater (SSGM) has unique optical characteristics which may allow remote sensing detection via ocean color data. In this study, we develop a first-generation model for quantifying SSGM that can be applied to both spaceborne (MODIS-Aqua) and airborne (PRISM) ocean color platforms. In addition, the model was prepared and verified with one of the more comprehensivein-situstable oxygen isotope datasets compiled for the WAP region. The SSGM model appears robust and provides accurate predictions of the fractional contribution of glacial meltwater to seawater when compared within-situdata (r= 0.82, median absolute percent difference = 6.38%, median bias = −0.04), thus offering an additional novel method for quantifying and studying glacial meltwater in the WAP region.
more »
« less
- Award ID(s):
- 2026045
- PAR ID:
- 10516046
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 10
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Western Antarctic Peninsula is undergoing rapid environmental change. Regional warming is causing increased glacial meltwater discharge, but the ecological impact of this meltwater over large spatiotemporal scales is not well understood. Here, we leverage 20 years of remote sensing data, reanalysis products, and field observations to assess the effects of sea surface glacial meltwater on phytoplankton biomass and highlight its importance as a key environmental driver for this region’s productive ecosystem. We find a strong correlation between meltwater and phytoplankton chlorophyll-a across multiple time scales and datasets. We attribute this relationship to nutrient fertilization by glacial meltwater, with potential additional contribution from surface ocean stabilization associated with sea-ice presence. While high phytoplankton biomass typically follows prolonged winter sea-ice seasons and depends on the interplay between light and nutrient limitation, our results indicate that the positive effects of increased glacial meltwater on phytoplankton communities likely mitigate the negative impact of sea-ice loss in this region in recent years. Our findings underscore the critical need to consider glacial meltwater as a key ecological driver in polar coastal ecosystems.more » « less
-
Antarctic minke whales (Balaenoptera bonaerensis, AMW) are an abundant, ice-dependent species susceptible to rapid climatic changes occurring in parts of the Antarctic. Here, we used remote biopsy samples and estimates of length derived from unoccupied aircraft system (UAS) to characterize for the first time the sex ratio, maturity, and pregnancy rates of AMWs around the Western Antarctic Peninsula (WAP). DNA profiling of 82 biopsy samples (2013–2020) identified 29 individual males and 40 individual females. Blubber progesterone levels indicated 59% of all sampled females were pregnant, irrespective of maturity. When corrected for sexual maturity, the median pregnancy rate was 92.3%, indicating that most mature females become pregnant each year. We measured 68 individuals by UAS (mean = 8.04 m) and estimated that 66.5% of females were mature. This study provides the first data on the demography of AMWs along the WAP and represents the first use of non-lethal approaches to studying this species. Furthermore, these results provide baselines against which future changes in population status can be assessed in this rapidly changing marine ecosystem.more » « less
-
Abstract Iron is an essential micronutrient for phytoplankton and plays an integral role in the marine carbon cycle. The supply and bioavailability of iron are therefore important modulators of climate over glacial-interglacial cycles. Inputs of iron from the Antarctic continental shelf alleviate iron limitation in the Southern Ocean, driving hotspots of productivity. Glacial meltwater fluxes can deliver high volumes of particulate iron. Here, we show that glacier meltwater provides particles rich in iron(II) to the Antarctic shelf surface ocean. Particulate iron(II) is understood to be more bioavailable to phytoplankton, but less stable in oxic seawater, than iron(III). Using x-ray microscopy, we demonstrate co-occurrence of iron and organic carbon-rich phases, suggesting that organic carbon retards the oxidation of potentially-bioavailable iron(II) in oxic seawater. Accelerating meltwater fluxes may provide an increasingly important source of bioavailable iron(II)-rich particles to the Antarctic surface ocean, with implications for the Southern Ocean carbon pump and ecosystem productivity.more » « less
-
Abstract. The West Antarctic Peninsula (WAP) is a rapidly warming region, withsubstantial ecological and biogeochemical responses to the observed changeand variability for the past decades, revealed by multi-decadal observationsfrom the Palmer Antarctica Long-Term Ecological Research (LTER) program. Thewealth of these long-term observations provides an important resource forecosystem modeling, but there has been a lack of focus on the developmentof numerical models that simulate time-evolving plankton dynamics over theaustral growth season along the coastal WAP. Here, we introduce aone-dimensional variational data assimilation planktonic ecosystem model (i.e., theWAP-1D-VAR v1.0 model) equipped with a modelparameter optimization scheme. We first demonstrate the modified and newlyadded model schemes to the pre-existing food web and biogeochemicalcomponents of the other ecosystem models that WAP-1D-VAR model was adaptedfrom, including diagnostic sea-ice forcing and trophic interactions specificto the WAP region. We then present the results from model experiments wherewe assimilate 11 different data types from an example Palmer LTER growthseason (October 2002–March 2003) directly related to corresponding modelstate variables and flows between these variables. The iterative dataassimilation procedure reduces the misfits between observationsand model results by 58 %, compared to before optimization, via an optimized set of12 parameters out of a total of 72 free parameters. The optimized model resultscapture key WAP ecological features, such as blooms during seasonal sea-iceretreat, the lack of macronutrient limitation, and modeled variables andflows comparable to other studies in the WAP region, as well as severalimportant ecosystem metrics. One exception is that the model slightlyunderestimates particle export flux, for which we discuss potentialunderlying reasons. The data assimilation scheme of the WAP-1D-VAR modelenables the available observational data to constrain previously poorlyunderstood processes, including the partitioning of primary production bydifferent phytoplankton groups, the optimal chlorophyll-to-carbon ratio ofthe WAP phytoplankton community, and the partitioning of dissolved organiccarbon pools with different lability. The WAP-1D-VAR model can besuccessfully employed to link the snapshots collected by the available datasets together to explain and understand the observed dynamics along thecoastal WAP.more » « less
An official website of the United States government

