We analyzed new recordings of
This content will become publicly available on April 1, 2025
We investigate broadband SPdKS waveforms from earthquakes occurring beneath Myanmar. These paths sample the core–mantle boundary beneath northwestern China. Waveform modeling shows that two ∼250 × 250 km wide ultra-low velocity zones (ULVZs) with a thickness of roughly 10 km exist in the region. The ULVZ models fitting these data have large S-wave velocity drops of 55% but relatively small 14% P-wave velocity reductions. This is almost a 4:1 S- to P-wave velocity ratio and is suggestive of a partial melt origin. These ULVZs exist in a region of the Circum-Pacific with a long history of subduction and far from large low-velocity province (LLVP) boundaries where ULVZs are more commonly observed. It is possible that these ULVZs are generated by partial melting of mid-ocean ridge basalt.
more » « less- Award ID(s):
- 2216564
- PAR ID:
- 10516186
- Publisher / Repository:
- The Seismological Society of America
- Date Published:
- Journal Name:
- The Seismic Record
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2694-4006
- Page Range / eLocation ID:
- 111 to 120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract SPdKS seismic waveforms from a global set of broadband seismograms and horizontal tiltmeters from the Hi‐net array in Japan from 26 earthquakes in the Central American region. The anomalous waveforms are consistent with the presence of at least three ultralow‐velocity zones (ULVZs), on the core‐mantle boundary beneath northern Mexico and the southeastern United States. These ULVZs ring an area of high seismic wave speeds observed in tomographic models that has long been associated with past subduction. Waveform modeling using the PSVaxi method suggests that the ULVZs haveS andP wave velocity decreases of 40% and 10%, respectively. These velocity decreases are likely best explained by a partially molten origin where the melt is generated through melting of mid‐ocean ridge basalt atop the subducted slab. -
SUMMARY Within the last decade, thin ultra-low velocity zone (ULVZ) layering, sitting directly on top of the core–mantle boundary (CMB), has begun to be investigated using the flip-reverse-stack (FRS) method. In this method, pre- and post-cursor arrivals that are symmetrical in time about the ScS arrival, but with opposite polarities, are stacked. This same methodology has also been applied to high velocity layering, with indications that ultra-high velocity zones (UHVZs) may also exist. Thus far, studies using the FRS technique have relied on 1-D synthetic predictions to infer material properties of ULVZs. 1-D ULVZ models predominantly show a SdS precursor that reflects off the top of the ULVZ and an ScscS reverberation within the ULVZ that arrives as a post-cursor. 1-D UHVZ models are more complex and have a different number of arrivals depending on a variety of factors including UHVZ thickness, velocity contrast, and lateral extent. 1-D modelling approaches assume that lower mantle heterogeneity is constant and continuous everywhere across the lower mantle. However, lower mantle features display lateral heterogeneity and are either finite in extent or display local thickness variations. We examine the interaction of the ScS wavefield with ULVZs and UHVZs in 2.5-D geometries of finite extent. We show that multiple additional arrivals exist that are not present in 1-D predictions. In particular, multipath ScS arrivals as well as additional post-cursor arrivals are generated. Subsequent processing by the FRS method generates complicated FRS traces with multiple peaks. Furthermore, post-cursor arrivals can be generated even when the ScS ray path does not directly strike the heterogeneity from above. Analysing these predictions for 2.5-D models using 1-D modelling techniques demonstrates that a cautious approach must be adopted in utilization and interpretation of FRS traces to determine if the ScS wavefield is interacting with a ULVZ or UHVZ through a direct strike on the top of the feature. In particular, traveltime delays or advances of the ScS arrival should be documented and symmetrical opposite polarity arrivals should be demonstrated to exist around ScS. The latter can be quantified by calculation of a time domain multiplication trace. Because multiple post-cursor arrivals are generated by finite length heterogeneities, interpretation should be confined to single layer models rather than to interpret the additional peaks as internal layering. Furthermore, strong trade-offs exist between S-wave velocity perturbation and thickness making estimations of ULVZ or UHVZ elastic parameters highly uncertain. We test our analysis methods using data from an event occurring in the Fiji-Tonga region recorded in North America. The ScS bounce points for this event sample the CMB region to the southeast of Hawaii, in a region where ULVZs have been identified in several recent studies. We see additional evidence for a ULVZ in this region centred at 14°N and 153°W with a lateral scale of at least 250 km × 360 km. Assuming a constant S-wave velocity decrease of −10 or −20 per cent with respect to the PREM model implies a ULVZ thickness of up to 16 or 9 km, respectively.
-
Abstract Ultralow velocity zones (ULVZs) and seismic anisotropy are both commonly detected in the lowermost mantle at the edges of the two antipodal large low velocity provinces (LLVPs). The preferential occurrences of both ULVZs and anisotropy at LLVP edges are potentially connected to deep mantle dynamics; however, the two phenomena are typically investigated separately. Here we use waveforms from three deep earthquakes to jointly investigate ULVZ structure and lowermost mantle anisotropy near an edge of the Pacific LLVP to the southeast of Hawaii. We model global wave propagation through candidate lowermost mantle structures using AxiSEM3D. Two structures that cause ULVZ‐characteristic postcursors in our data are identified and are modeled as cylindrical ULVZs with radii of ∼1° and ∼3° and velocity reductions of ∼36% and ∼20%. One of these features has not been detected before. The ULVZs are located to the south of Hawaii and are part of the previously detected complex low velocity structure at the base of the mantle in our study region. The waveforms also reveal that, to first order, the base of the mantle in our study region is a broad and thin region of modestly low velocities. Measurements of Sdiffshear wave splitting reveal evidence for lowermost mantle anisotropy that is approximately co‐located with ULVZ material. Our measurements of co‐located anisotropy and ULVZ material suggest plausible geodynamic scenarios for flow in the deep mantle near the Pacific LLVP edge.
-
Abstract We present a 3D shear‐wave velocity model of the southern African upper mantle developed using 30–200 s period Rayleigh waves recorded on regional seismic networks spanning the subcontinent. The model shows high velocities (∼4.7–4.8 km/s) at depths of 50–250 km beneath the Archean nucleus and several surrounding Paleoproterozoic and Mesoproterozoic terranes, placing the margin of the greater Kalahari Craton along the southern boundary of the Damara Belt and the eastern boundaries of the Gariep and Namaqua‐Natal belts. At depths ≥250 km, there is little difference in velocities beneath the craton and off‐craton regions, suggesting that the cratonic lithosphere extends to depths of about 200–250 km. Upper mantle velocities beneath uplifted areas of southern Africa are higher than the global average and significantly higher than beneath eastern Africa, indicating there that is little thermal modification of the upper mantle present today beneath the Southern African Plateau.
-
Abstract Ultralow‐velocity zones (ULVZs) have been studied using a variety of seismic phases; however, their physical origin is still poorly understood. Short period ScP waveforms are extensively used to infer ULVZ properties because they may be sensitive to all ULVZ elastic moduli and thickness. However, ScP waveforms are additionally complicated by the effects of path attenuation, coherent noise, and source complexity. To address these complications, we developed a hierarchical Bayesian inversion method that allows us to invert ScP waveforms from multiple events simultaneously and accounts for path attenuation and correlated noise. The inversion method is tested with synthetic predictions which show that the inclusion of attenuation is imperative to recover ULVZ parameters accurately and that the ULVZ thickness and S‐wave velocity decrease are most reliably recovered. Utilizing multiple events simultaneously reduces the effects of coherent noise and source time function complexity, which in turn allows for the inclusion of more data to be used in the analyses. We next applied the method to ScP data recorded in Australia for 291 events that sample the core‐mantle boundary beneath the Coral Sea. Our results indicate, on average, ∼12‐km thick ULVZ with ∼14% reduction in S‐wave velocity across the region, but there is a greater variability in ULVZ properties in the south than that in the north of the sampled region. P‐wave velocity reductions and density perturbations are mostly below 10%. These ScP data show more than one ScP post‐cursor in some areas which may indicate complex 3‐D ULVZ structures.