skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Genome Assembly of a Living Fossil, the Atlantic Horseshoe Crab Limulus polyphemus , Reveals Lineage-Specific Whole-Genome Duplications, Transposable Element-Based Centromeres, and a ZW Sex Chromosome System
Abstract Horseshoe crabs, considered living fossils with a stable morphotype spanning ∼445 million years, are evolutionarily, ecologically, and biomedically important species experiencing rapid population decline. Of the four extant species of horseshoe crabs, the Atlantic horseshoe crab, Limulus polyphemus, has become an essential component of the modern medicine toolkit. Here, we present the first chromosome-level genome assembly, and the most contiguous and complete assembly to date, for L. polyphemus using nanopore long-read sequencing and chromatin conformation analysis. We find support for three horseshoe crab-specific whole-genome duplications, but none shared with Arachnopulmonata (spiders and scorpions). Moreover, we discovered tandem duplicates of endotoxin detection pathway components Factors C and G, identify candidate centromeres consisting of Gypsy retroelements, and classify the ZW sex chromosome system for this species and a sister taxon, Carcinoscorpius rotundicauda. Finally, we revealed this species has been experiencing a steep population decline over the last 5 million years, highlighting the need for international conservation interventions and fisheries-based management for this critical species.  more » « less
Award ID(s):
1943371
PAR ID:
10596490
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Wilson, Melissa
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
42
Issue:
2
ISSN:
0737-4038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Farms for eastern oyster Crassostrea virginica , which are commonly located along shallow estuarine shores of the eastern USA, use a range of farm equipment and require regular access to care for and harvest oyster livestock. In some cases, these farms are located in areas used by Atlantic horseshoe crabs Limulus polyphemus as they come ashore during spring to spawn. The sandy shores of the Delaware Bay host the largest spawning aggregations of this species in the world. Limited studies have examined interactions between horseshoe crabs and intertidal oyster farms, and concern has been raised about the horseshoe crab’s ability to traverse oyster farms to reach spawning habitat. This study examines potential farm interactions with horseshoe crabs in Delaware Bay during the 2018 and 2019 crab spawning season. Our studies included a range of experiments and surveys during high and low tide to observe crab abundance and behavior at rack-and-bag oyster farm and non-farm sites. In all cases, results indicated that crabs can successfully traverse rack-and-bag farms and reach spawning beaches. Crabs do not differentially use farm versus non-farm areas, and crab behavior is relatively unaltered by farm gear. These results provide important context for developing frameworks for managing ecological interactions among farms and wildlife species of concern. 
    more » « less
  2. Abstract Horseshoe crabs as a group are renowned for their morphological conservatism punctuated by marked shifts in morphology associated with the occupation of non-marine environments and have been suggested to exhibit a consistent developmental trajectory throughout their evolutionary history. Here, we report a new species of horseshoe crab from the Ordovician (Late Sandbian) of Kingston, Ontario, Canada, from juvenile and adult material. This new species provides critical insight into the ontogeny and morphology of the earliest horseshoe crabs, indicating that at least some Palaeozoic forms had freely articulating tergites anterior to the fused thoracetron and an opisthosoma comprising 13 segments. 
    more » « less
  3. null (Ed.)
    The blue crab, Callinectes sapidus (Rathbun, 1896) is an economically, culturally, and ecologically important species found across the temperate and tropical North and South American Atlantic coast. A reference genome will enable research for this high-value species. Initial assembly combined 200× coverage Illumina paired-end reads, a 60× 8 kb mate-paired library, and 50× PacBio data using the MaSuRCA assembler resulting in a 985 Mb assembly with a scaffold N50 of 153 kb. Dovetail Chicago and HiC sequencing with the 3d DNA assembler and Juicebox assembly tools were then used for chromosome scaffolding. The 50 largest scaffolds span 810 Mb are 1.5–37 Mb long and have a repeat content of 36%. The 190 Mb unplaced sequence is in 3921 sequences over 10 kb with a repeat content of 68%. The final assembly N50 is 18.9 Mb for scaffolds and 9317 bases for contigs. Of arthropod BUSCO, ∼88% (888/1013) were complete and single copies. Using 309 million RNAseq read pairs from 12 different tissues and developmental stages, 25,249 protein-coding genes were predicted. Between C. sapidus and Portunus trituberculatus genomes, 41 of 50 large scaffolds had high nucleotide identity and protein-coding synteny, but 9 scaffolds in both assemblies were not clear matches. The protein-coding genes included 9423 one-to-one putative orthologs, of which 7165 were syntenic between the two crab species. Overall, the two crab genome assemblies show strong similarities at the nucleotide, protein, and chromosome level and verify the blue crab genome as an excellent reference for this important seafood species. 
    more » « less
  4. Horseshoe crabs (Chelicerata: Xiphosura) are generally considered to exhibit a highly conserved morphology throughout their evolutionary history and are one of the archetypal ‘living fossil’ groups. This narrative has been challenged in recent years, with numerous lines of evidence indicate that horseshoe crabs have been an evolutionarily dynamic lineage, exhibiting several shifts into non-marine environments and associated peaks in rates of evolutionary change. Nevertheless, marine forms are still characterized by a relatively limited morphological variability for most of their evolutionary history, as evidenced by a consistent developmental trajectory shared between species over 250million years. Attempts to ascertain when horseshoe crabs adopted this ontogenetic trajectory are hindered by the sparse early Paleozoic record of the group; only two species, both assigned to the genus Lunataspis, have been described from the Ordovician, and no Silurian species are known. A new, highly aberrant horseshoe crab from the Late Ordovician Big Hill Lagerstätte, Michigan, provides evidence of early morphological experimentation within the group, indicating that even marine lineages were variable early on in their evolutionary history. The new species represents a distinct genus characterized by a greatly elongated prosomal carapace and is represented by two available specimens (with a third held in a private collection), all of which preserve the same highly unusual carapace shape, indicating the unusual morphology to be a genuine characteristic of the species. Geometric morphometric analysis places the new species in an unoccupied region of morphospace distinct to that of other horseshoe crabs, confirming early morphological experimentation within the clade. Interestingly, while the prosoma is markedly different to any other horseshoe crab species known, the thoracetron is similar to that of Lunataspis. Taken in combination with the known ontogeny of Lunataspis borealis, which exhibits the characteristic xiphosurid development of the thoracetron but a more eurypterid-like ontogenetic trajectory of the prosoma, the new species indicates that developmental canalization occurred within the horseshoe crab lineage, with the thoracetron canalizing prior to the prosoma. 
    more » « less
  5. Oleksyk, Taras (Ed.)
    Abstract The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation. In addition, we report the karyotype for this species, which was used to anchor and assign chromosome numbers to the chromosome-length scaffolds. The draft assembly was ~2.5 Gb in length, with 95.6% of it anchored to 19 chromosome-length scaffolds, corresponding to the 2n = 38 chromosomes revealed by the karyotype. The assembly has contig and scaffold N50 values of 148.8 kbp and 145.4 Mbp, respectively, and is up to 96% complete based on BUSCO analyses. Annotation of the assembly, including evidence from RNA-seq data, identified 21,406 protein-coding genes and a repeat content of 37.35%. Phylogenomic analyses indicated that the black-footed ferret diverged from the European polecat/domestic ferret lineage 1.6 million yr ago. This assembly will enable research on the conservation genomics of black-footed ferrets and thereby aid in the further restoration of this endangered species. 
    more » « less