skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dark dimension gravitons as dark matter
A<sc>bstract</sc> We consider cosmological aspects of the Dark Dimension (a mesoscopic dimension of micron scale), which has recently been proposed as the unique corner of the quantum gravity landscape consistent with both the Swampland criteria and observations. In particular we show how this leads, by the universal coupling of the Standard Model sector to bulk gravitons, to massive spin 2 KK excitations of the graviton in the dark dimension (the “dark gravitons”) as an unavoidable dark matter candidate. Assuming a lifetime for the current de Sitter phase of our universe of order Hubble, which follows from both the dS Swampland Conjecture and TCC, we show that generic features of the dark dimension cosmology can naturally lead to the correct dark matter density and a resolution of the cosmological coincidence problem, where the matter/radiation equality temperature (T~ 1 eV) coincides with the temperature where the dark energy begins to dominate. Thus one does not need to appeal to Weinberg’s anthropic argument to explain this coincidence. The dark gravitons are produced atT~ 4 GeV, and their composition changes as they mainly decay to lighter gravitons, without losing much total mass density. The mass of dark gravitons ismDM∼ 1 − 100 keV today.  more » « less
Award ID(s):
2013988 2013858
PAR ID:
10516580
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> In the dark dimension scenario, which predicts an extra dimension of micron scale, dark gravitons (KK modes) are a natural dark matter candidate. In this paper, we study observable features of this model. In particular, their decay to standard matter fields can distort the CMB and impact other astrophysical signals. Using this we place bounds on the parameters of this model. In particular we find that the natural range of parameters in this scenario is consistent with these constraints and leads to the prediction that the mean mass of the dark matter today is close to a few hundred keV and the effective size of the extra dimension is around 1–30 μm. 
    more » « less
  2. A<sc>bstract</sc> Atomic dark matter is a simple but highly theoretically motivated possibility for an interacting dark sector that could constitute some or all of dark matter. We perform a comprehensive study of precision cosmological observables on minimal atomic dark matter, exploring for the first time the full parameter space of dark QED coupling and dark electron and proton masses (αD,$$ {m}_{e_D} $$ m e D ,$$ {m}_{p_D} $$ m p D ) as well as the two cosmological parameters of aDM mass fractionfDand temperature ratioξat time of SM recombination. We also show how aDM can accommodate the (H0, S8) tension from late-time measurements, leading to a better fit than ΛCDM or ΛCDM + dark radiation. Furthermore, including late-time measurements leads to closed contours of preferredξand dark hydrogen binding energy. The dark proton mass is seemingly unconstrained. Our results serve as an important new jumping-off point for future precision studies of atomic dark matter at non-linear and smaller scales. 
    more » « less
  3. A<sc>bstract</sc> We argue that the striking similarity between the cosmic abundances of baryons and dark matter, despite their very different astrophysical behavior, strongly motivates the scenario in which dark matter resides within a rich dark sector parallel in structure to that of the standard model. The near cosmic coincidence is then explained by an approximateℤ2exchange symmetry between the two sectors, where dark matter consists of stable dark neutrons, with matter and dark matter asymmetries arising via parallel WIMP baryogenesis mechanisms. Taking a top-down perspective, we point out that an adequateℤ2symmetry necessitates solving the electroweak hierarchy problem in each sector, without our committing to a specific implementation. A higher-dimensional realization in the far UV is presented, in which the hierarchical couplings of the two sectors and the requisiteℤ2-breaking structure arise naturally from extra-dimensional localization and gauge symmetries. We trace the cosmic history, paying attention to potential pitfalls not fully considered in previous literature. Residualℤ2-breaking can very plausibly give rise to the asymmetric reheating of the two sectors, needed to keep the cosmological abundance of relativistic dark particles below tight bounds. We show that, despite the need to keep inter-sector couplings highly suppressed after asymmetric reheating, there can naturally be order-one couplings mediated by TeV scale particles which can allow experimental probes of the dark sector at high energy colliders. Massive mediators can also induce dark matter direct detection signals, but likely at or below the neutrino floor. 
    more » « less
  4. A<sc>bstract</sc> Cosmology may give rise to appreciable populations of both particle dark matter and primordial black holes (PBH) with the combined mass density providing the observationally inferred value ΩDM≈ 0.26. Early studies highlighted that scenarios with both particle dark matter and PBH are strongly excluded byγ-ray limits for particle dark matter with a velocity independent thermal cross section 〈σν〉 ~ 3 × 10−26cm3/s, as is the case for classic WIMP dark matter. Here we examine the limits from di useγ-rays on velocity-dependent, including annihilations which arep-wave with 〈σν〉 ∝v2ord-wave 〈σν〉 ∝v4, which we find to be considerably less constraining. This work also utilizes a refined treatment of the PBH dark matter density profile. Importantly, we highlight that even if the freeze-out process isp-wave it is typical for (loop/phase-space) suppresseds-wave processes to actually provide the leading contributions to the experimentally constrainedγ-ray flux from the PBH halo. 
    more » « less
  5. Abstract We analyze the first cosmological baryonic zoom-in simulations of galaxies in dissipative self-interacting dark matter (dSIDM). The simulations utilize the FIRE-2 galaxy formation physics with the inclusion of dissipative dark matter self-interactions modeled as a constant fractional energy dissipation (fdiss= 0.75). In this paper, we examine the properties of dwarf galaxies withM*∼ 105–109Min both isolation and within Milky Way–mass hosts. For isolated dwarfs, we find more compact galaxy sizes and promotion of disk formation in dSIDM with (σ/m) ≤ 1 cm2g−1. On the contrary, models with (σ/m) = 10 cm2g−1produce puffier stellar distributions that are in tension with the observed size–mass relation. In addition, owing to the steeper central density profiles, the subkiloparsec circular velocities of isolated dwarfs when (σ/m) ≥ 0.1 cm2g−1are enhanced by about a factor of 2, which are still consistent with the kinematic measurements of Local Group dwarfs but in tension with the Hirotation curves of more massive field dwarfs. Meanwhile, for satellites of Milky Way–mass hosts, the median circular velocity profiles are marginally affected by dSIDM physics, but dSIDM may help promote the structural diversity of dwarf satellites. The number of satellites is slightly enhanced in dSIDM, but the differences are small compared with the large host-to-host variations. In conclusion, the dSIDM models with (σ/m) ≳ 0.1 cm2g−1,fdiss= 0.75 are in tension in massive dwarfs (Mhalo∼ 1011M) due to circular velocity constraints. However, models with lower effective cross sections (at this halo mass/velocity scale) are still viable and can produce nontrivial observable signatures. 
    more » « less