A<sc>bstract</sc> We study a scenario where a dark sector, described by a Conformal Field Theory (CFT), interacts with the Standard Model through the neutrino portal. In this setup, conformal invariance breaks below the electroweak scale, causing the theory to transition into a confined (hadronic) phase. One of the hadronic excitations in this phase can act as dark matter. In the “Conformal Freeze-In” cosmological framework, the dark sector is populated through interactions with the Standard Model at temperatures where it retains approximate conformal symmetry. The dark matter relic density depends on the CFT parameters, such as the dimension of the operator coupled to the Standard Model. We demonstrate that this model can reproduce the DM relic density and meet all observational constraints. The same neutrino portal interaction may also generate masses for the active neutrinos. The dark matter candidate could either be a pseudo-Goldstone boson (PGB) or a composite fermion with the quantum numbers of a sterile neutrino. In the latter case, the model is consistent with the current X-ray constraints, and may be detectable with future X-ray observations.
more »
« less
Astrophysical constraints on decaying dark gravitons
A<sc>bstract</sc> In the dark dimension scenario, which predicts an extra dimension of micron scale, dark gravitons (KK modes) are a natural dark matter candidate. In this paper, we study observable features of this model. In particular, their decay to standard matter fields can distort the CMB and impact other astrophysical signals. Using this we place bounds on the parameters of this model. In particular we find that the natural range of parameters in this scenario is consistent with these constraints and leads to the prediction that the mean mass of the dark matter today is close to a few hundred keV and the effective size of the extra dimension is around 1–30 μm.
more »
« less
- Award ID(s):
- 2013858
- PAR ID:
- 10541079
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 6
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> We consider cosmological aspects of the Dark Dimension (a mesoscopic dimension of micron scale), which has recently been proposed as the unique corner of the quantum gravity landscape consistent with both the Swampland criteria and observations. In particular we show how this leads, by the universal coupling of the Standard Model sector to bulk gravitons, to massive spin 2 KK excitations of the graviton in the dark dimension (the “dark gravitons”) as an unavoidable dark matter candidate. Assuming a lifetime for the current de Sitter phase of our universe of order Hubble, which follows from both the dS Swampland Conjecture and TCC, we show that generic features of the dark dimension cosmology can naturally lead to the correct dark matter density and a resolution of the cosmological coincidence problem, where the matter/radiation equality temperature (T~ 1 eV) coincides with the temperature where the dark energy begins to dominate. Thus one does not need to appeal to Weinberg’s anthropic argument to explain this coincidence. The dark gravitons are produced atT~ 4 GeV, and their composition changes as they mainly decay to lighter gravitons, without losing much total mass density. The mass of dark gravitons ismDM∼ 1 − 100 keV today.more » « less
-
A<sc>bstract</sc> We argue that the striking similarity between the cosmic abundances of baryons and dark matter, despite their very different astrophysical behavior, strongly motivates the scenario in which dark matter resides within a rich dark sector parallel in structure to that of the standard model. The near cosmic coincidence is then explained by an approximateℤ2exchange symmetry between the two sectors, where dark matter consists of stable dark neutrons, with matter and dark matter asymmetries arising via parallel WIMP baryogenesis mechanisms. Taking a top-down perspective, we point out that an adequateℤ2symmetry necessitates solving the electroweak hierarchy problem in each sector, without our committing to a specific implementation. A higher-dimensional realization in the far UV is presented, in which the hierarchical couplings of the two sectors and the requisiteℤ2-breaking structure arise naturally from extra-dimensional localization and gauge symmetries. We trace the cosmic history, paying attention to potential pitfalls not fully considered in previous literature. Residualℤ2-breaking can very plausibly give rise to the asymmetric reheating of the two sectors, needed to keep the cosmological abundance of relativistic dark particles below tight bounds. We show that, despite the need to keep inter-sector couplings highly suppressed after asymmetric reheating, there can naturally be order-one couplings mediated by TeV scale particles which can allow experimental probes of the dark sector at high energy colliders. Massive mediators can also induce dark matter direct detection signals, but likely at or below the neutrino floor.more » « less
-
A<sc>bstract</sc> We discuss models of ultralight scalar Dark Matter (DM) with linear and quadratic couplings to the Standard Model (SM). In addition to studying the phenomenology of linear and quadratic interactions separately, we examine their interplay. We review the different experiments that can probe such interactions and present the current and expected future bounds on the parameter space. In particular, we discuss the scalar field solution presented in [A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik and P. Wolf, Phys.Rev.D 98 (2018) 6, 064051], and extend it to theories that capture both the linear and the quadratic couplings of the Dark Matter (DM) field to the Standard Model (SM). Furthermore, we discuss the theoretical aspects and the corresponding challenges for natural models in which the quadratic interactions are of phenomenological importance.more » « less
-
A bstract We argue for a relation between the supersymmetry breaking scale and the measured value of the dark energy density Λ. We derive it by combining two quantum gravity consistency swampland constraints, which tie the dark energy density Λ and the gravitino mass M 3 / 2 , respectively, to the mass scale of a light Kaluza-Klein tower and, therefore, to the UV cut-off of the effective theory. Whereas the constraint on Λ has recently led to the Dark Dimension scenario, with a prediction of a single mesoscopic extra dimension of the micron size, we use the constraint on M 3 / 2 to infer the implications of such a scenario for the scale of supersymmetry breaking. We find that a natural scale for supersymmetry signatures is $$ M=\mathcal{O}\left({\Lambda}^{\frac{1}{8}}\right)=\mathcal{O}\left(\textrm{TeV}\right). $$ M = O Λ 1 8 = O TeV . This mass scale is within reach of LHC and of the next generation of hadron colliders. Finally, we discuss possible string theory and effective supergravity realizations of the Dark Dimension scenario with broken supersymmetry.more » « less
An official website of the United States government

