skip to main content


Title: Exploring the Tradeoff Between System Profit and Income Equality Among Ride-hailing Drivers

This paper examines the income inequality among rideshare drivers resulting from discriminatory cancellations by riders, considering the impact of demographic factors such as gender, age, and race. We investigate the tradeoff between income inequality, referred to as the fairness objective, and system efficiency, known as the profit objective. To address this issue, we propose an online bipartite-matching model that captures the sequential arrival of riders according to a known distribution. The model incorporates the notion of acceptance rates between driver-rider types, which are defined based on demographic characteristics. Specifically, we analyze the probabilities of riders accepting or canceling their assigned drivers, reflecting the level of acceptance between different rider and driver types. We construct a bi-objective linear program as a valid benchmark and propose two LP-based parameterized online algorithms. Rigorous analysis of online competitive ratios is conducted to illustrate the flexibility and efficiency of our algorithms in achieving a balance between fairness and profit. Furthermore, we present experimental results based on real-world and synthetic datasets, validating the theoretical predictions put forth in our study.

 
more » « less
Award ID(s):
1948157
PAR ID:
10516888
Author(s) / Creator(s):
;
Publisher / Repository:
AI Access Foundation
Date Published:
Journal Name:
Journal of Artificial Intelligence Research
Volume:
79
ISSN:
1076-9757
Page Range / eLocation ID:
569 to 597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)

    Several scientific studies have reported the existence of the income gap among rideshare drivers based on demographic factors such as gender, age, race, etc. In this paper, we study the income inequality among rideshare drivers due to discriminative cancellations from riders, and the tradeoff between the income inequality (called fairness objective) with the system efficiency (called profit objective). We proposed an online bipartite-matching model where riders are assumed to arrive sequentially following a distribution known in advance. The highlight of our model is the concept of acceptance rate between any pair of driver-rider types, where types are defined based on demographic factors. Specially, we assume each rider can accept or cancel the driver assigned to her, each occurs with a certain probability which reflects the acceptance degree from the rider type towards the driver type. We construct a bi-objective linear program as a valid benchmark and propose two LP-based parameterized online algorithms. Rigorous online competitive ratio analysis is offered to demonstrate the flexibility and efficiency of our online algorithms in balancing the two conflicting goals, promotions of fairness and profit. Experimental results on a real-world dataset are provided as well, which confirm our theoretical predictions.

     
    more » « less
  2. Rideshare and ride-pooling platforms use artificial intelligence-based matching algorithms to pair riders and drivers. However, these platforms can induce unfairness either through an unequal income distribution or disparate treatment of riders. We investigate two methods to reduce forms of inequality in ride-pooling platforms: by incorporating fairness constraints into the objective function and redistributing income to drivers who deserve more. To test these out, we use New York City taxi data to evaluate their performance on both the rider and driver side. For the first method, we find that optimizing for driver fairness out-performs state-of-the-art models in terms of the number of riders serviced, showing that optimizing for fairness can assist profitability in certain circumstances. For the second method, we explore income redistribution as a method to combat income inequality by having drivers keep an $r$ fraction of their income, and contribute the rest to a redistribution pool. For certain values of $r$, most drivers earn near their Shapley value, while still incentivizing drivers to maximize income, thereby avoiding the free-rider problem and reducing income variability. While the first method is useful because it improves both rider and driver-side fairness, the second method is useful because it improves fairness without affecting profitability, and both methods can be combined to improve rider and driver-side fairness.

     
    more » « less
  3. Matching markets with historical data are abundant in many applications, e.g., matching candidates to jobs in hiring, workers to tasks in crowdsourcing markets, and jobs to servers in cloud services. In all these applications, a match consumes one or more shared and limited resources and the goal is to best utilize these to maximize a global objective. Additionally, one often has historical data and hence some statistics (usually first-order moments) of the arriving agents (e.g., candidates, workers, and jobs) can be learnt. To model these scenarios, we propose a unifying framework, called Multi- Budgeted Online Assignment with Known Adversarial Distributions. In this model,we have a set of offline servers with different deadlines and a set of online job types. At each time, a job of type j arrives. Assigning this job to a server i yields a profit w(i, j) while consuming a(i,j) -- a vector lying in [0, 1]^K -- quantities of distinct resources. The goal is to design an (online) assignment policy that maximizes the total expected profit without violating the (hard) budget constraint. We propose and theoretically analyze two linear programming (LP) based algorithms which are almost optimal among all LP-based approaches. We also propose several heuristics adapted from our algorithms and compare them to other LP-agnostic algorithms using both synthetic as well as real-time cloud scheduling and public safety datasets. Experimental results show that our proposed algorithms are effective and significantly out-perform the baselines. Moreover, we show empirically the trade-off between fairness and efficiency of our algorithms which does well even on fairness metrics without explicitly optimizing for it. 
    more » « less
  4. Transport Network companies (TNCs) have changed the way we travel in the last five years where a rider can book a ride using her smartphone. However, TNC doesn't provide any robust mechanism to validate the driver or the rider before the ride. This has led to many violent incidents ranging from assault, kidnap of the riders by fake ride-hailing drivers. The most recent one that shook the entire nation is the murder of a USC student when the rider got into the wrong car thinking that it is her Uber [1]. To address this problem, we have proposed a solution that adds an extra security layer in authenticating both rider and driver before initiating a ride. In this solution, both rider and driver will authenticate themselves using technologies like QR Code and fingerprint biometrics supported by modern smartphones before they take the ride. 
    more » « less
  5. This study investigated electric-scooter (e-scooter) rider behaviors and preferences to inform ways to increase safety for e-scooter riders. Data was collected from 329 e-scooter riders via two online and one in-person survey. Survey questions considered rider roadway infrastructure preferences, safety perceptions, and helmet-wearing behavior. Protected bike lanes were more commonly indicated as the safest infrastructure (62.4%) but were less likely to be the most preferred infrastructure (49.7%). Sidewalks were better matched between riders, indicating them as their preferred riding infrastructure (22.7%) and the perceived safest riding infrastructure (24.5%). Riders had low feelings of safety and preference for riding on major/neighborhood streets or on unprotected bike lanes. Riders reported significant concern about being hit by a moving vehicle, running into a pothole/rough roadway, and running into a moving vehicle. In line with the Theory of Planned Behavior, a significant relationship was found between the frequency of riding and helmet-wearing behavior, with more frequent riders being more likely to wear helmets. Findings suggest that existing roadway infrastructure may pose safety challenges and encourage rider-selected workarounds. Public policy may consider emphasizing protected bicycle lane development, rather than helmet mandates, to support e-scooter riding safety for all vulnerable road users.

     
    more » « less