skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facilitating collaborative science through portals connected to high-performance computing
Large scale collaborative science requires tools to facilitate sharing of data, protocols, analysis tools, as well as data products and their provenance. We describe here two recent science gateways successfully deployed to accomplish collaborative research. The first is the Synergistic Discovery and Design Environment (SD2E), which was a web-based analysis platform for collaborative analysis, data sharing, and application development. The second is the 3D Electron Microscopy (3DEM) portal, which is a web-based research platform focused on developing and disseminating new technologies for enhanced resolution 3DEM. Both gateways were hosted and connected to high-performance computing resources at the Texas Advanced Computing Center.  more » « less
Award ID(s):
2014862 1707356
PAR ID:
10517095
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
science gateways collaboration FAIR Data supercomputing
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Science Gateways provide an easily accessible and powerful computing environment for researchers. These are built around a set of software tools that are frequently and heavily used by large number of researchers in specific domains. Science Gateways have been catering to a growing need of researchers for easy to use computational tools, however their usage model is typically single user-centric. As scientific research becomes ever more team oriented, the need driven by user-demand to support integrated collaborative capabilities in Science Gateways is natural progression. Ability to share data/results with others in an integrated manner is an important and frequently requested capability. In this article we will describe and discuss our work to provide a rich environment for data organization and data sharing by integrating the SeedMeLab (formerly SeedMe2) platform with two Science Gateways: CIPRES and GenApp. With this integration we also demonstrate SeedMeLab’s extensible features and how Science Gateways may incorporate and realize FAIR data principles in practice and transform into community data hubs. 
    more » « less
  2. Neuroscientists are increasingly relying on high performance/throughput computing resources for experimentation on voluminous data, analysis and visualization at multiple neural levels. Though current science gateways provide access to computing resources, datasets and tools specific to the disciplines, neuroscientists require guided knowledge discovery at various levels to accomplish their research/education tasks. The guidance can help them to navigate them through relevant publications, tools, topic associations and cloud platform options as they accomplish important research and education activities. To address this need and to spur research productivity and rapid learning platform development, we present “OnTimeRecommend”, a novel recommender system that comprises of several integrated recommender modules through RESTful web services. We detail a neuroscience use case in a CyNeuro science gateway, and show how the OnTimeRecommend design can enable novice/expert user interfaces, as well as template-driven control of heterogeneous cloud resources. 
    more » « less
  3. Abstract BackgroundScientists have amassed a wealth of microbiome datasets, making it possible to study microbes in biotic and abiotic systems on a population or planetary scale; however, this potential has not been fully realized given that the tools, datasets, and computation are available in diverse repositories and locations. To address this challenge, we developed iMicrobe.us, a community-driven microbiome data marketplace and tool exchange for users to integrate their own data and tools with those from the broader community. FindingsThe iMicrobe platform brings together analysis tools and microbiome datasets by leveraging National Science Foundation–supported cyberinfrastructure and computing resources from CyVerse, Agave, and XSEDE. The primary purpose of iMicrobe is to provide users with a freely available, web-based platform to (1) maintain and share project data, metadata, and analysis products, (2) search for related public datasets, and (3) use and publish bioinformatics tools that run on highly scalable computing resources. Analysis tools are implemented in containers that encapsulate complex software dependencies and run on freely available XSEDE resources via the Agave API, which can retrieve datasets from the CyVerse Data Store or any web-accessible location (e.g., FTP, HTTP). ConclusionsiMicrobe promotes data integration, sharing, and community-driven tool development by making open source data and tools accessible to the research community in a web-based platform. 
    more » « less
  4. Building science gateways for humanities content poses new challenges to the science gateway community. Compared with science gateways devoted to scientific content, humanities-related projects usually require 1) processing data in various formats, such as text, image, video, etc., 2) constant public access from a broad audience, and therefore 3) reliable security, ideally with low maintenance. Many traditional science gateways are monolithic in design, which makes them easier to write, but they can be computationally inefficient when integrated with numerous scientific packages for data capture and pipeline processing. Since these packages tend to be single-threaded or nonmodular, they can create traffic bottlenecks when processing large numbers of requests. Moreover, these science gateways are usually challenging to resume development on due to long gaps between funding periods and the aging of the integrated scientific packages. In this paper, we study the problem of building science gateways for humanities projects by developing a service-based architecture, and present two such science gateways: the Moving Image Research Collections (MIRC) – a science gateway focusing on image analysis for digital surrogates of historical motion picture film, and SnowVision - a science gateway for studying pottery fragments in southeastern North America. For each science gateway, we present an overview of the background of the projects, and some unique challenges in their design and implementation. These two science gateways are deployed on XSEDE’s Jetstream academic clouding computing resource and are accessed through web interfaces. Apache Airavata middleware is used to manage the interactions between the web interface and the deep-learning-based (DL) backend service running on the Bridges graphics processing unit (GPU) cluster. 
    more » « less
  5. Summary Scholars worldwide leverage science gateways/virtual research environments (VREs) for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this article, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of, for example, their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next‐generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE‐IG) of the Research Data Alliance. Thus, community‐driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations. 
    more » « less