A<sc>bstract</sc> We review the effective field theory (EFT) bootstrap by formulating it as an infinite-dimensional semidefinite program (SDP), built from the crossing symmetric sum rules and the S-matrix primal ansatz. We apply the program to study the large-Nchiral perturbation theory (χPT) and observe excellent convergence of EFT bounds between the dual (rule-out) and primal (rule-in) methods. This convergence aligns with the predictions of duality theory in SDP, enabling us to analyze the bound states and resonances in the ultra-violet (UV) spectrum. Furthermore, we incorporate the upper bound of unitarity to uniformly constrain the EFT space from the UV scaleMusing the primal method, thereby confirming the consistency of the large-Nexpansion. In the end, we translate the large-N χPT bounds to constrain the higher derivative corrections of holographic QCD models.
more »
« less
Holographic transport beyond the supergravity approximation
A<sc>bstract</sc> We set up a unified framework to efficiently compute the shear and bulk viscosities of strongly coupled gauge theories with gravitational holographic duals involving higher derivative corrections. We consider both Weyl4corrections, encoding the finite ’t Hooft coupling corrections of the boundary theory, and Riemann2corrections, responsible for non-equal central chargesc≠aof the theory at the ultraviolet fixed point. Our expressions for the viscosities in higher derivative holographic models are extracted from a radially conserved current and depend only on the horizon data.
more »
« less
- Award ID(s):
- 2210271
- PAR ID:
- 10517101
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 4
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory.more » « less
-
A<sc>bstract</sc> Motivated by the long-term goal of finding holographic descriptions for$$ \mathcal{N} $$ = 1 and$$ \mathcal{N} $$ = 2 super QCD, we revisit the subject of “noncritical” superstring theory. Focusing on string models with 6d super Poincaré invariance, we provide a careful worldsheet derivation of the leading-order effective theories for the lowest modes. We identify them asseven-dimensional,maximally supersymmetricgauged supergravities: the SO(4) theory for noncritical IIA and the ISO(4) theory for noncritical IIB. The same theories also arise as consistent truncations onS3of the 10d IIB and IIA supergravities, respectively, where the chirality flip is as expected from T-duality. These effective supergravities should be interpreted in the following sense. The noncritical string can be viewed as a special case of a discrete series of backgrounds labelled by an integerk(which counts the number of NS5 branes in a certain duality frame); the “noncritical” value isk= 2, while fork→ ∞ one recovers a weakly-curved 10d target space. The effective supergravities described here give an accurate description of the interactions among the lowest modes fork→ ∞, with higher derivative corrections suppressed by powers of 1/k. We discuss BPS solutions of the 7d gauged supergravities and their uplift to 10d solutions. In particular, we find a novel class of solutions with RR flux, parametrized by a function of three variables that solves an elegant PDE. While we cannot solve the PDE in closed form except in trivial cases, we confirm that our solutions correspond to a 10d IIA Hanany-Witten setup with continuous distributions of both “color” D4 branes and “flavor” D6 branes.more » « less
-
A<sc>bstract</sc> We calculate the complete soft-gluon corrections for the production of colorless final states through N3LO in single-particle-inclusive kinematics. We present explicit analytical results and use them to study higher-order QCD corrections for the production of a heavy charged Higgs pair (H+H−) via quark-antiquark annihilation in the Two-Higgs-Doublet Model at LHC energies. We calculate the NNLO soft-gluon and virtual QCD corrections as well as the N3LO soft-gluon corrections to the total cross section and the charged-Higgs rapidity distribution. This is the first calculation of complete N3LO soft-gluon corrections for a process in single-particle-inclusive kinematics, and the results can be applied to other processes with colorless final states.more » « less
-
A<sc>bstract</sc> We analyze correlation functions of SU(k) × SU(2)Fflavor currents in a family of three-dimensional$$ \mathcal{N} $$ = 4 superconformal field theories, combining analytic bootstrap methods with input from supersymmetric localization. Via holographic duality, we extract gluon and graviton scattering amplitudes of M-theory on AdS4×S7/ℤkwhich contains a ℂ2/ℤkorbifold singularity. From these results, we derive aspects of the effective description of M-theory on the orbifold singularity beyond its leading low energy limit. We also determine a threshold correction to the holographic correlator from the combined contribution of two-loop gluon and tree-level bulk graviton exchange.more » « less
An official website of the United States government

