Abstract Spatial confinement of matter in functional nanostructures has propelled these systems to the forefront of nanoscience, both as a playground for exotic physics and quantum phenomena and in multiple applications including plasmonics, optoelectronics, and sensing. In parallel, the emergence of monochromated electron energy loss spectroscopy (EELS) has enabled exploration of local nanoplasmonic functionalities within single nanoparticles and the collective response of nanoparticle assemblies, providing deep insight into associated mechanisms. However, modern synthesis processes for plasmonic nanostructures are often limited in the types of accessible geometry, and materials and are limited to spatial precisions on the order of tens of nm, precluding the direct exploration of critical aspects of the structure‐property relationships. Here, the atomic‐sized probe of the scanning transmission electron microscope is used to perform precise sculpting and design nanoparticle configurations. Using low‐loss EELS, dynamic analyses of the evolution of the plasmonic response are provided. It is shown that within self‐assembled systems of nanoparticles, individual nanoparticles can be selectively removed, reshaped, or patterned with nanometer‐level resolution, effectively modifying the plasmonic response in both space and energy. This process significantly increases the scope for design possibilities and presents opportunities for unique structure development, which are ultimately the key for nanophotonic design.
more »
« less
Spectroscopic Observation and Modeling of Photonic Modes in CeO2 Nanostructures
Abstract Photonic modes in dielectric nanostructures, e.g., wide gap semiconductor like CeO2 (ceria), have the potential for various applications such as information transmission and sensing technology. To fully understand the properties of such phenomenon at the nanoscale, electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope was employed to detect and explore photonic modes in well-defined ceria nanocubes. To facilitate the interpretation of the observations, EELS simulations were performed with finite-element methods. The simulations allow the electric and magnetic field distributions associated with different modes to be determined. A simple analytical eigenfunction model was also used to estimate the energy of the photonic modes. In addition, by comparing various spectra taken at different location relative to the cube, the effect of the surrounding environment on the modes could be sensed. This work gives a high-resolution description of the photonic modes' properties in nanostructures, while demonstrating the advantage of EELS in characterizing optical phenomena locally.
more »
« less
- Award ID(s):
- 2109202
- PAR ID:
- 10517176
- Publisher / Repository:
- Microscopy Society of America
- Date Published:
- Journal Name:
- Microscopy and Microanalysis
- Volume:
- 29
- Issue:
- 4
- ISSN:
- 1431-9276
- Page Range / eLocation ID:
- 1307 to 1314
- Subject(s) / Keyword(s):
- Electron Energy-Loss Spectroscopy Photonic Modes CeO2 Nanostructures Transmission Electron Microscopy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The controlled creation and manipulation of defects in 2D materials has become increasingly popular as a means to design and tune new material functionalities. However, defect characterization by direct atomic-scale imaging is often severely limited by surface contamination due to a blanket of hydrocarbons. Thus, analysis techniques that can characterize atomic-scale defects despite the contamination layer are advantageous. In this work, we take inspiration from X-ray absorption spectroscopy and use broad-beam electron energy loss spectroscopy (EELS) to characterize defect structures in 2D hexagonal boron nitride (hBN) based on averaged fine structure in the boron K-edge. Since EELS is performed in a transmission electron microscope (TEM), imaging can be performed in-situ to assess contamination levels and other factors such as tears in the fragile 2D sheets, which can affect the spectroscopic analysis. We demonstrate the TEM-EELS technique for 2D hBN samples irradiated with different ion types and doses, finding spectral signatures indicative of boron–oxygen bonding that can be used as a measure of sample defectiveness depending on the ion beam treatment. We propose that even in cases where surface contamination has been mitigated, the averaging-based TEM-EELS technique can be useful for efficient sample surveys to support atomically resolved EELS experiments.more » « less
-
We report a combined experimental and theoretical investigation of electron scattering from nitrous oxide (N2O). Experimental two-dimensional electron energy loss spectra (EELS) provide information about vibrational states of a molecule and about potential energy surfaces of anionic resonances. This study reports the EELS measured at 2.5–2.6 eV incident energy. The calculations using complex-valued extensions of equation-of-motion coupled-cluster theory (based on the non-Hermitian quantum mechanics) facilitate the assignment of all major EELS features. Our simulations identified two broad and partially overlapping resonances—one of π* and another of σ* character—located at ∼2.8 and 2.3 eV vertically at the equilibrium geometry of the neutral. Due to the Renner–Teller effect, the π* resonance splits upon bending. The upper state, 2Π, remains linear. The lower state mixes with the σ* configuration, giving rise to the 2A′ resonance, which becomes strongly stabilized at bent geometries (αNNO = 134°), resulting in very low adiabatic electron attachment energy. The calculations estimate the electron affinity of N2O to be −0.140 eV. The 2A′ state is predissociative, with the barrier for the N–O bond dissociation of 0.183 eV. The measured EELS feature sharp vibrational structures at low energy losses, followed by a linear (in logarithmic scale) tail extending to the maximum energy loss. The simulations attribute the sharp features at the low energy loss to the non-resonant excitations and contributions from the cold 2Π resonance. The tail is attributed to the vibrationally hot 2A′ state, and its slope is determined by the excess energy available in this state.more » « less
-
The molecule-based ferrimagnetic semiconductor vanadium tetracyanoethylene (V[TCNE]x, x ≈ 2) has garnered interest from the quantum information community due to its excellent coherent magnonic properties and ease of on-chip integration. Despite these attractive properties, a detailed understanding of the electronic structure and mechanism for long-range magnetic ordering have remained elusive due to a lack of detailed atomic and electronic structural information. Previous studies via x-ray absorption near edge spectroscopy and the extended x-ray absorption fine structure have led to various proposed structures, and in general, V[TCNE]x is believed to be a three-dimensional network of octahedrally coordinated V2+, each bonded to six TCNE molecules. Here, we elucidate the electronic structure, structural ordering, and degradation pathways of V[TCNE]x films by correlating calculations of density functional theory (DFT) with scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) of V[TCNE]x films. Low-loss EELS measurements reveal a bandgap and an excited state structure that agree quantitatively with DFT modeling, including an energy splitting between apical and equatorial TCNE ligands within the structure, providing experimental results directly backed by theoretical descriptions of the electronic structure driving the robust magnetic ordering in these films. Core-loss EELS confirms the presence of octahedrally coordinated V+2 atoms. Upon oxidation, changes in the C1s-π* peak indicate that C=C of TCNE is preferentially attacked. Furthermore, we identify a relaxation of the structural ordering as the films age. These results lay the foundation for a more comprehensive and fundamental understanding of magnetic ordering and dynamics in these classes of metal–ligand compounds.more » « less
-
Nanowires of layered van der Waals (vdW) crystals are of interest due to structural characteristics and emerging properties that have no equivalent in conventional 3D crystalline nanostructures. Here, vapor-liquid-solid growth, optoelectronics, and photonics of GaS vdW nanowires are studied. Electron microscopy and diffraction demonstrate the formation of high-quality layered nanostructures with different vdW layer orientation. GaS nanowires with vdW stacking perpendicular to the wire axis have ribbon-like morphologies with lengths up to 100 micrometers and uniform width. Wires with axial layer stacking show tapered morphologies and a corrugated surface due to twinning between successive few-layer GaS sheets. Layered GaS nanowires are excellent wide-bandgap optoelectronic materials with Eg = 2.65 eV determined by single-nanowire absorption measurements. Nanometer-scale spectroscopy on individual nanowires shows intense blue band-edge luminescence along with longer wavelength emissions due to transitions between gap states, and photonic properties such as interference of confined waveguide modes propagating within the nanowires. The combined results show promise for applications in electronics, optoelectronics and photonics, as well as photo- or electrocatalysis owing to a high density of reactive edge sites, and intercalation-type energy storage benefitting from facile access to the interlayer vdW gaps.more » « less
An official website of the United States government

