skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Look Ma, No Hands! Agent-Environment Factorization of Egocentric Videos
The analysis and use of egocentric videos for robotic tasks is made challenging by occlusion due to the hand and the visual mismatch between the human hand and a robot end-effector. In this sense, the human hand presents a nuisance. However, often hands also provide a valuable signal, e.g. the hand pose may suggest what kind of object is being held. In this work, we propose to extract a factored representation of the scene that separates the agent (human hand) and the environment. This alleviates both occlusion and mismatch while preserving the signal, thereby easing the design of models for downstream robotics tasks. At the heart of this factorization is our proposed Video Inpainting via Diffusion Model (VIDM) that leverages both a prior on real-world images (through a large-scale pre-trained diffusion model) and the appearance of the object in earlier frames of the video (through attention). Our experiments demonstrate the effectiveness of VIDM at improving inpainting quality on egocentric videos and the power of our factored representation for numerous tasks: object detection, 3D reconstruction of manipulated objects, and learning of reward functions, policies, and affordances from videos.  more » « less
Award ID(s):
2007035
PAR ID:
10517193
Author(s) / Creator(s):
; ;
Publisher / Repository:
Neural Information Processing Systems
Date Published:
Journal Name:
Neural Information Processing Systems
Format(s):
Medium: X
Location:
New Orleans, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Egocentric and exocentric perspectives of human action differ significantly, yet overcoming this extreme viewpoint gap is critical in augmented reality and robotics. We propose VIEWPOINTROSETTA, an approach that unlocks large-scale unpaired ego and exo video data to learn clip-level viewpoint-invariant video representations. Our framework introduces (1) a diffusion-based Rosetta Stone Translator (RST), which, leveraging a moderate amount of synchronized multi-view videos, serves as a translator in feature space to decipher the alignment between unpaired ego and exo data, and (2) a dual encoder that aligns unpaired data representations through contrastive learning with RST-based synthetic feature augmentation and soft alignment. To evaluate the learned features in a standardized setting, we construct a new cross-view benchmark using Ego-Exo4D, covering cross-view retrieval, action recognition, and skill assessment tasks. Our framework demonstrates superior cross-view understanding compared to previous view-invariant learning and ego video representation learning approaches, and opens the door to bringing vast amounts of traditional third-person video to bear on the more nascent first-person setting. 
    more » « less
  2. We introduce SWITCH-A-VIEW, a model that learns to automatically select the viewpoint to display at each timepoint when creating a how-to video. The key insight of our approach is how to train such a model from unlabeled -- but human-edited -- video samples. We pose a pretext task that pseudo-labels segments in the training videos for their primary viewpoint (egocentric or exocentric), and then discovers the patterns between the visual and spoken content in a how-to video on the one hand and its view-switch moments on the other hand. Armed with this predictor, our model can be applied to new multi-view video settings for orchestrating which viewpoint should be displayed when, even when such settings come with limited labels. We demonstrate our idea on a variety of real-world videos from HowTo100M and Ego-Exo4D, and rigorously validate its advantages. 
    more » « less
  3. We introduce a self-supervised method for learning visual correspondence from unlabeled video. The main idea is to use cycle-consistency in time as free supervisory signal for learning visual representations from scratch. At training time, our model optimizes a spatial feature representation to be useful for performing cycle-consistent tracking. At test time, we use the acquired representation to find nearest neighbors across space and time. We demonstrate the generalizability of the representation across a range of visual correspondence tasks, including video object segmentation, keypoint tracking, and optical flow. Our approach outperforms previous self-supervised methods and performs competitively with strongly supervised methods. Overall, we find that the learned representation generalizes surprisingly well, despite being trained only on indoor videos and without fine-tuning. 
    more » « less
  4. Querying video data has become increasingly popular and useful. Video queries can be complex, ranging from retrieval tasks (“find me the top videos that have … ”), to analytics (“how many videos contained object X per day?”), to excerpting tasks (“highlight and zoom into scenes with object X near object Y”), or combinations thereof. Results for video queries are still typically shown as either relational data or a primitive collection of clickable thumbnails on a web page. Presenting query results in this form is an impedance mismatch with the video medium: they are cumbersome to skim through and are in a different modality and information density compared to the source data. We describe V2V, a system to efficiently synthesize video results for video queries. V2V returns a fully-edited video, allowing the user to consume results in the same manner as the source videos. A key challenge is that synthesizing video results from a collection of videos is computationally intensive, especially within interactive query response times. To address this, V2V features a grammar to express video transformations in a declarative manner and a heuristic optimizer that improves the efficiency of V2V processing in a manner similar to how databases execute relational queries. Experiments show that our V2V optimizer enables video synthesis to run 3x faster. 
    more » « less
  5. 3D hand pose estimation in everyday egocentric images is challenging for several reasons: poor visual signal (occlusion from the object of interaction, low resolution & motion blur), large perspective distortion (hands are close to the camera), and lack of 3D annotations outside of controlled settings. While existing methods often use hand crops as input to focus on fine-grained visual information to deal with poor visual signal, the challenges arising from perspective distortion and lack of 3D annotations in the wild have not been systematically studied. We focus on this gap and explore the impact of different practices, i.e. crops as input, incorporating camera information, auxiliary supervision, scaling up datasets. We provide several insights that are applicable to both convolutional and transformer models, leading to better performance. Based on our findings, we also present WildHands, a system for 3D hand pose estimation in everyday egocentric images. Zero-shot evaluation on 4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D) demonstrate the effectiveness of our approach across 2D and 3D metrics, where we beat past methods by 7.4% – 66%. In system level comparisons, WildHands achieves the best 3D hand pose on ARCTIC egocentric split, outperforms FrankMocap across all metrics and HaMeR on 3 out of 6 metrics while being 10× smaller and trained on 5× less data. 
    more » « less