skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2007035

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We tackle the novel problem of predicting 3D hand motion and contact maps (or Interaction Trajectories) given a single RGB view, action text, and a 3D contact point on the object as input. Our approach consists of (1) Interaction Codebook: a VQVAE model to learn a latent codebook of hand poses and contact points, effectively tokenizing interaction trajectories, (2) Interaction Predictor: a transformer-decoder module to predict the interaction trajectory from test time inputs by using an indexer module to retrieve a latent affordance from the learned codebook. To train our model, we develop a data engine that extracts 3D hand poses and contact trajectories from the diverse HoloAssist dataset. We evaluate our model on a benchmark that is 2.5-10X larger than existing works, in terms of diversity of objects and interactions observed, and test for generalization of the model across object categories, action categories, tasks, and scenes. Experimental results show the effectiveness of our approach over transformer & diffusion baselines across all settings. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. 3D hand pose estimation in everyday egocentric images is challenging for several reasons: poor visual signal (occlusion from the object of interaction, low resolution & motion blur), large perspective distortion (hands are close to the camera), and lack of 3D annotations outside of controlled settings. While existing methods often use hand crops as input to focus on fine-grained visual information to deal with poor visual signal, the challenges arising from perspective distortion and lack of 3D annotations in the wild have not been systematically studied. We focus on this gap and explore the impact of different practices, i.e. crops as input, incorporating camera information, auxiliary supervision, scaling up datasets. We provide several insights that are applicable to both convolutional and transformer models, leading to better performance. Based on our findings, we also present WildHands, a system for 3D hand pose estimation in everyday egocentric images. Zero-shot evaluation on 4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D) demonstrate the effectiveness of our approach across 2D and 3D metrics, where we beat past methods by 7.4% – 66%. In system level comparisons, WildHands achieves the best 3D hand pose on ARCTIC egocentric split, outperforms FrankMocap across all metrics and HaMeR on 3 out of 6 metrics while being 10× smaller and trained on 5× less data. 
    more » « less
  3. 3D hand pose estimation in everyday egocentric images is challenging for several reasons: poor visual signal (occlusion from the object of interaction, low resolution & motion blur), large perspective distortion (hands are close to the camera), and lack of 3D annotations outside of controlled settings. While existing methods often use hand crops as input to focus on fine-grained visual information to deal with poor visual signal, the challenges arising from perspective distortion and lack of 3D annotations in the wild have not been systematically studied. We focus on this gap and explore the impact of different practices, i.e. crops as input, incorporating camera information, auxiliary supervision, scaling up datasets. We provide several insights that are applicable to both convolutional and transformer models, leading to better performance. Based on our findings, we also present WildHands, a system for 3D hand pose estimation in everyday egocentric images. Zero-shot evaluation on 4 diverse datasets (H2O, AssemblyHands, Epic-Kitchens, Ego-Exo4D) demonstrate the effectiveness of our approach across 2D and 3D metrics, where we beat past methods by 7.4% – 66%. In system level comparisons, WildHands achieves the best 3D hand pose on ARCTIC egocentric split, outperforms FrankMocap across all metrics and HaMeR on 3 out of 6 metrics while being 10× smaller and trained on 5× less data. 
    more » « less
  4. Prior works for reconstructing hand-held objects from a single image train models on images paired with 3D shapes. Such data is challenging to gather in the real world at scale. Consequently, these approaches do not generalize well when presented with novel objects in in-the-wild settings. While 3D supervision is a major bottleneck, there is an abundance of a) in-the-wild raw video data showing hand-object interactions and b) synthetic 3D shape collections. In this paper, we propose modules to leverage 3D supervision from these sources to scale up the learning of models for reconstructing hand-held objects. Specifically, we extract multiview 2D mask supervision from videos and 3D shape priors from shape collections. We use these indirect 3D cues to train occupancy networks that predict the 3D shape of objects from a single RGB image. Our experiments in the challenging object generalization setting on in-the-wild MOW dataset show 11.6% relative improvement over models trained with 3D supervision on existing datasets. 
    more » « less
  5. Prior works for reconstructing hand-held objects from a single image train models on images paired with 3D shapes. Such data is challenging to gather in the real world at scale. Consequently, these approaches do not generalize well when presented with novel objects in in-the-wild settings. While 3D supervision is a major bottleneck, there is an abundance of a) in-the-wild raw video data showing hand-object interactions and b) synthetic 3D shape collections. In this paper, we propose modules to leverage 3D supervision from these sources to scale up the learning of models for reconstructing hand-held objects. Specifically, we extract multiview 2D mask supervision from videos and 3D shape priors from shape collections. We use these indirect 3D cues to train occupancy networks that predict the 3D shape of objects from a single RGB image. Our experiments in the challenging object generalization setting on in-the-wild MOW dataset show 11.6% relative improvement over models trained with 3D supervision on existing datasets. 
    more » « less
  6. A common failure mode for policies trained with imitation is compounding execution errors at test time. When the learned policy encounters states that are not present in the expert demonstrations, the policy fails, leading to degenerate behavior. The Dataset Aggregation, or DAgger approach to this problem simply collects more data to cover these failure states. However, in practice, this is often prohibitively expensive. In this work, we propose Diffusion Meets DAgger (DMD), a method that reaps the benefits of DAgger but without the cost, for eye-in-hand imitation learning problems. Instead of collecting new samples to cover out-of-distribution states, DMD uses recent advances in diffusion models to synthesize these samples. This leads to robust performance from few demonstrations. We compare DMD against behavior cloning baseline across four tasks: pushing, stacking, pouring, and hanging a shirt. In pushing, DMD achieves 80% success rate with as few as 8 expert demonstrations, where naive behavior cloning reaches only 20%. In stacking, DMD succeeds on average 92% of the time across 5 cups, versus 40% for BC. When pouring coffee beans, DMD transfers to another cup successfully 80% of the time. Finally, DMD attains 90% success rate for hanging shirt on a clothing rack. 
    more » « less
  7. The analysis and use of egocentric videos for robotic tasks is made challenging by occlusion due to the hand and the visual mismatch between the human hand and a robot end-effector. In this sense, the human hand presents a nuisance. However, often hands also provide a valuable signal, e.g. the hand pose may suggest what kind of object is being held. In this work, we propose to extract a factored representation of the scene that separates the agent (human hand) and the environment. This alleviates both occlusion and mismatch while preserving the signal, thereby easing the design of models for downstream robotics tasks. At the heart of this factorization is our proposed Video Inpainting via Diffusion Model (VIDM) that leverages both a prior on real-world images (through a large-scale pre-trained diffusion model) and the appearance of the object in earlier frames of the video (through attention). Our experiments demonstrate the effectiveness of VIDM at improving inpainting quality on egocentric videos and the power of our factored representation for numerous tasks: object detection, 3D reconstruction of manipulated objects, and learning of reward functions, policies, and affordances from videos. 
    more » « less
  8. In this paper, we analyze the behavior of existing techniques and design new solutions for the problem of one-shot visual imitation. In this setting, an agent must solve a novel instance of a novel task given just a single visual demonstration. Our analysis reveals that current methods fall short because of three errors: the DAgger problem arising from purely offline training, last centimeter errors in interacting with objects, and mis-fitting to the task context rather than to the actual task. This motivates the design of our modular approach where we a) separate out task inference (what to do) from task execution (how to do it), and b) develop data augmentation and generation techniques to mitigate mis-fitting. The former allows us to leverage hand-crafted motor primitives for task execution which side-steps the DAgger problem and last centimeter errors, while the latter gets the model to focus on the task rather than the task context. Our model gets 100 and 48 success rates on two recent benchmarks, improving upon the current state-of-the-art by absolute 90 and 20 respectively. 
    more » « less
  9. Interactive object understanding, or what we can do to objects and how is a long-standing goal of computer vision. In this paper, we tackle this problem through observation of human hands in in-the-wild egocentric videos. We demonstrate that observation of what human hands interact with and how can provide both the relevant data and the necessary supervision. Attending to hands, readily localizes and stabilizes active objects for learning and reveals places where interactions with objects occur. Analyzing the hands shows what we can do to objects and how. We apply these basic principles on the EPIC-KITCHENS dataset, and successfully learn state-sensitive features, and object affordances (regions of interaction and afforded grasps), purely by observing hands in egocentric videos. 
    more » « less
  10. Abstract: This paper tackles the problem of learning value functions from undirected state-only experience (state transitions without action labels i.e. (s,s’,r) tuples). We first theoretically characterize the applicability of Q-learning in this setting. We show that tabular Q-learning in discrete Markov decision processes (MDPs) learns the same value function under any arbitrary refinement of the action space. This theoretical result motivates the design of Latent Action Q-learning or LAQ, an offline RL method that can learn effective value functions from state-only experience. Latent Action Q-learning (LAQ) learns value functions using Q-learning on discrete latent actions obtained through a latent-variable future prediction model. We show that LAQ can recover value functions that have high correlation with value functions learned using ground truth actions. Value functions learned using LAQ lead to sample efficient acquisition of goal-directed behavior, can be used with domain-specific low-level controllers, and facilitate transfer across embodiments. Our experiments in 5 environments ranging from 2D grid world to 3D visual navigation in realistic environments demonstrate the benefits of LAQ over simpler alternatives, imitation learning oracles, and competing methods. 
    more » « less