Disordered iron germanium (FeGe) has recently garnered interest as a testbed for a variety of magnetic phenomena as well as for use in magnetic memory and logic applications. This is partially owing to its ability to host skyrmions and antiskyrmions—nanoscale whirlpools of magnetic moments that could serve as information carriers in spintronic devices. In particular, a tunable skyrmion–antiskyrmion system may be created through precise control of the defect landscape in B20-phase FeGe, motivating the development of methods to systematically tune disorder in this material and understand the ensuing structural properties. To this end, we investigate a route for modifying magnetic properties in FeGe. In particular, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ ions, which creates a dispersion of amorphized regions that may preferentially host antiskyrmions at densities controlled by the irradiation fluence. To further tune the disorder landscape, we conduct a systematic electron diffraction study with in situ annealing, demonstrating the ability to recrystallize controllable fractions of the material at temperatures ranging from ∼150 to 250 °C. Finally, we describe the crystallization kinetics using the Johnson–Mehl–Avrami–Kolmogorov model, finding that the growth of crystalline grains is consistent with diffusion-controlled one-to-two dimensional growth with a decreasing nucleation rate.
more »
« less
Inducing a tunable skyrmion-antiskyrmion system through ion beam modification of FeGe films
Abstract Skyrmions and antiskyrmions are nanoscale swirling textures of magnetic moments formed by chiral interactions between atomic spins in magnetic noncentrosymmetric materials and multilayer films with broken inversion symmetry. These quasiparticles are of interest for use as information carriers in next-generation, low-energy spintronic applications. To develop skyrmion-based memory and logic, we must understand skyrmion-defect interactions with two main goals—determining how skyrmions navigate intrinsic material defects and determining how to engineer disorder for optimal device operation. Here, we introduce a tunable means of creating a skyrmion-antiskyrmion system by engineering the disorder landscape in FeGe using ion irradiation. Specifically, we irradiate epitaxial B20-phase FeGe films with 2.8 MeV Au4+ions at varying fluences, inducing amorphous regions within the crystalline matrix. Using low-temperature electrical transport and magnetization measurements, we observe a strong topological Hall effect with a double-peak feature that serves as a signature of skyrmions and antiskyrmions. These results are a step towards the development of information storage devices that use skyrmions and antiskyrmions as storage bits, and our system may serve as a testbed for theoretically predicted phenomena in skyrmion-antiskyrmion crystals.
more »
« less
- PAR ID:
- 10517478
- Publisher / Repository:
- npJ Spintronics
- Date Published:
- Journal Name:
- npj Spintronics
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2948-2119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract From elementary particles to cosmological structures, topological solitons are ubiquitous nonlinear excitations valued for their robustness and complex interactions. In magnetism, solitons such as skyrmions and antiskyrmions behave analogously to particles and antiparticles, typically annihilating in pairs in accordance with topological conservation laws. Here the stripe‐to‐skyrmion transition is experimentally observed and a model for a skyrmion–antiskyrmion–skyrmion intertwined state is introduced, in which the central antiskyrmion is annihilated, leading to an increase in the local topological number. Because this transition occurs repeatedly across the film, the cumulative effect produces a global increase in the total topological charge. This model reflects a breakdown of topological protection in isotropic Dzyaloshinskii–Moriya interaction (DMI) materials, where symmetry constraints render the antiskyrmion energetically unstable and thermally activated. Using micromagnetic simulations and minimum‐energy‐path calculations, the antiskyrmion is identified as a transient, metastable excitation. To highlight its functional potential, this stripe‐to‐skyrmion transition within a Hall device is exploited to generate stochastic bitstreams, which are subsequently used in a proof‐of‐concept probabilistic computing demonstration. These results contribute to the understanding of topological spin‐texture dynamics and suggest opportunities for leveraging their transient behavior in probabilistic computing architectures.more » « less
-
Abstract Magnetic skyrmions are topologically nontrivial spin textures with envisioned applications in energy-efficient magnetic information storage. Toggling the presence of magnetic skyrmions via writing/deleting processes is essential for spintronics applications, which usually require the application of a magnetic field, a gate voltage or an electric current. Here we demonstrate the reversible field-free writing/deleting of skyrmions at room temperature, via hydrogen chemisorption/desorption on the surface of Ni and Co films. Supported by Monte-Carlo simulations, the skyrmion creation/annihilation is attributed to the hydrogen-induced magnetic anisotropy change on ferromagnetic surfaces. We also demonstrate the role of hydrogen and oxygen on magnetic anisotropy and skyrmion deletion on other magnetic surfaces. Our results open up new possibilities for designing skyrmionic and magneto-ionic devices.more » « less
-
Abstract Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on theμm scale, showing control over this order-disorder transition on scales relevant for device applications.more » « less
-
Abstract Magnetic skyrmions are swirling spin structures stabilized typically by the Dyzaloshinskii-Moriya interaction. The existing control of magnetic skyrmions has often relied on the use of an electric current, which may cause overheating in densely packed devices. Here we demonstrate, using phase-field simulations, that an isolated Néel skyrmion in a magnetic nanodisk can be repeatedly created and deleted by voltage-induced strains from a juxtaposed piezoelectric. Such a skyrmion switching is non-volatile, and consumes only ~0.5 fJ per switching which is about five orders of magnitude smaller than that by current-induced spin-transfer-torques. It is found that the strain-mediated skyrmion creation occurs through an intermediate vortex-like spin structure, and that the skyrmion deletion occurs though a homogenous shrinkage during which the Néel wall is temporarily transformed to a vortex-wall. These findings are expected to stimulate experimental research into strain-mediated voltage control of skyrmions, as well as other chiral spin structures for low-power spintronics.more » « less
An official website of the United States government

