This content will become publicly available on June 30, 2025
This article presents a novel method for learning time‐varying dynamic Bayesian networks. The proposed method breaks down the dynamic Bayesian network learning problem into a sequence of regression inference problems and tackles each problem using the Markov neighborhood regression technique. Notably, the method demonstrates scalability concerning data dimensionality, accommodates time‐varying network structure, and naturally handles multi‐subject data. The proposed method exhibits consistency and offers superior performance compared to existing methods in terms of estimation accuracy and computational efficiency, as supported by extensive numerical experiments. To showcase its effectiveness, we apply the proposed method to an fMRI study investigating the effective connectivity among various regions of interest (ROIs) during an emotion‐processing task. Our findings reveal the pivotal role of the subcortical‐cerebellum in emotion processing.
more » « less- NSF-PAR ID:
- 10517621
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Statistics in Medicine
- Volume:
- 43
- Issue:
- 14
- ISSN:
- 0277-6715
- Page Range / eLocation ID:
- 2713 to 2733
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The growing success of graph signal processing (GSP) approaches relies heavily on prior identification of a graph over which network data admit certain regularity. However, adaptation to increasingly dynamic environments as well as demands for real-time processing of streaming data pose major challenges to this end. In this context, we develop novel algorithms for online network topology inference given streaming observations assumed to be smooth on the sought graph. Unlike existing batch algorithms, our goal is to track the (possibly) time-varying network topology while maintaining the memory and computational costs in check by processing graph signals sequentially-in-time. To recover the graph in an online fashion, we leverage proximal gradient (PG) methods to solve a judicious smoothness-regularized, time-varying optimization problem. Under mild technical conditions, we establish that the online graph learning algorithm converges to within a neighborhood of (i.e., it tracks) the optimal time-varying batch solution. Computer simulations using both synthetic and real financial market data illustrate the effectiveness of the proposed algorithm in adapting to streaming signals to track slowly-varying network connectivity.more » « less
-
null (Ed.)We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations’ covariance matrix and the so-called graph shift operator (GSO—a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a sparse GSO that is structurally admissible and approximately commutes with the observations’ empirical covariance matrix. For streaming data, said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network.more » « less
-
null (Ed.)We leverage proximal gradient iterations to develop an online graph learning algorithm from streaming network data. Our goal is to track the (possibly) time-varying network topology, and effect memory and computational savings by processing the data on-the-fly as they are acquired. The setup entails observations modeled as stationary graph signals generated by local diffusion dynamics on the unknown network. Moreover, we may have a priori information on the presence or absence of a few edges as in the link prediction problem. The stationarity assumption implies that the observations' covariance matrix and the so-called graph shift operator (GSO - a matrix encoding the graph topology) commute under mild requirements. This motivates formulating the topology inference task as an inverse problem, whereby one searches for a (e.g., sparse) GSO that is structurally admissible and approximately commutes with the observations' empirical covariance matrix. For streaming data said covariance can be updated recursively, and we show online proximal gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse problem with quantifiable guarantees. Specifically, we derive conditions under which the GSO recovery cost is strongly convex and use this property to prove that the online algorithm converges to within a neighborhood of the optimal time-varying batch solution. Preliminary numerical tests illustrate the effectiveness of the proposed graph learning approach in adapting to streaming information and tracking changes in the sought dynamic network.more » « less
-
This paper presents a variational Bayesian inference Neural Network (BNN) approach to quantify uncertainties in matrix function estimation for the state-space linear parameter-varying (LPV) model identification problem using only inputs/outputs data. The proposed method simultaneously estimates states and posteriors of matrix functions given data. In particular, states are estimated by reaching a consensus between an estimator based on past system trajectory and an estimator by recurrent equations of states; posteriors are approximated by minimizing the Kullback–Leibler (KL) divergence between the parameterized posterior distribution and the true posterior of the LPV model parameters. Furthermore, techniques such as transfer learning are explored in this work to reduce computational cost and prevent convergence failure of Bayesian inference. The proposed data-driven method is validated using experimental data for identification of a control-oriented reactivity controlled compression ignition (RCCI) engine model.more » « less
-
In many biomedical and social science studies, it is important to identify and predict the dynamic changes of associations among network data over time. We propose a varying-coefficient model to incorporate time-varying network data, and impose a piecewise penalty function to capture local features of the network associations. The proposed approach is semi-parametric, and therefore flexible in modeling dynamic changes of association in network data problems. Furthermore, the approach can identify the time regions when dynamic changes of associations occur. To achieve a sparse network estimation at local time intervals, we implement a group penalization strategy involving parameters that overlap between groups. However, this makes the optimization process challenging for large-dimensional network data observed at many time points. We develop a fast algorithm, based on the smoothing proximal-gradient method, that is computationally efficient and accurate. We illustrate the proposed method through simulation studies and children's attention deficit hyperactivity disorder fMRI data, showing that the proposed method and algorithm recover dynamic network changes over time efficiently.more » « less