skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing a community-engaged decision framework for increased urban neighborhood resilience in a warming climate
Successful urban systems-related climate-action-support tools enable urban stakeholders to communicate and collaborate across and beyond their respective disciplines to identify innovative, transformative solutions to increase urban infrastructure resilience and sustainability. The actions of humans within buildings and the relationship of buildings to their near-building environments (aka microclimate) constitute one understudied urban system with significant impact on urban energy use strongly impacted by a warming urban climate. This interdisciplinary research team lead by an architect at a large research university collaborates with local community partners to identify evidence-based approaches for the integration of human behavior data, building energy use characteristics, future climate scenarios, and near-building microclimate data. The team has built a prototypical model, which integrates urban trees into urban energy models based on a large-scale inventory and probabilistic occupancy data based on a neighborhood wide energy use survey. To ensure that these urban energy models are equitable, however, the needs of marginalized populations must be included- especially those most vulnerable to the consequences of a changing climate. The paper reports on two intertwined research strands. First of all, the team’s best practices for gathering data from individuals facing marginalization as well as the application of this residential occupancy data into neighborhood energy models. The second strand addresses trees in urban landscapes and their capacity to modify temperatures in the near-building environment, which is important for reducing summer heat loads on building surfaces. Preliminary results for an urban neighborhood strategies are reported.  more » « less
Award ID(s):
1855902
PAR ID:
10517636
Author(s) / Creator(s):
Publisher / Repository:
American Institute of Architecture
Date Published:
Journal Name:
Proceedings of the American Institute of Architecture Conference on Communities
Volume:
2021
Page Range / eLocation ID:
200-204
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The U.S. Department of Energy (DOE) offers building reference prototypes for energy use modeling in commercial and residential buildings. However, these reference prototypes have traditionally been treated in isolation, neglecting the impact of neighboring objects on local microclimate. In urban energy models, where the intricate interaction of urban elements significantly shapes environmental conditions, it becomes more important to reconsider the conventional treatment of building reference prototypes. In this paper we aim to discern potential disparities in energy consumption estimations using DOE prototypes at an urban scale. The Urban Modeling Interface (UMI) was chosen as the simulation platform to incorporate the shadow effect from neighboring objects on building energy use across six scenarios with different shadow coverage by neighboring objects. We found that trees as neighboring structures can decrease cooling load by up to 29%. These results highlight the importance of considering the urban context in energy use estimation of buildings. 
    more » « less
  2. Abstract The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments. 
    more » « less
  3. Chronis, A. (Ed.)
    Traditional building energy simulation tools often assess performance as a function of the unique climate, physical characteristics, and operational parameters that define specific buildings and communities, planned or existing. This paper presents the results of a sensitivity analysis on the input parameters(relating to both the building and climate) that affect the annual energy consumption loads of an existing residential neighborhood in the U.S. Midwest over the anticipated service life of its buildings using the Urban Modeling Interface (umi). Accordingly, first, the effect of multiple building construction characteristic packages and inclusion of outdoor vegetation, are investigated under typical meteorological climate conditions. Afterwards, since typical climate conditions may not adequately describe the potential extreme conditions that will be encountered over the entire service life of these buildings, alternative weather datasets were also utilized in the sensitivity analysis. The study’s findings suggest that cooling loads are expected to increase dramatically over the next five decades, both due to changes in the climate and the more wide-spread use of air-conditioning units. Since the results showed that trees can effectively reduce cooling loads by up to 7%, it is recommended that urban vegetation should be considered as an effective adaptation measure for facing the growing cooling demands. 
    more » « less
  4. Abstract Rapid urbanization, climate change, and aging infrastructure pose significant challenges to achieving sustainability and resilience goals in urban building energy use. Although retrofitting offers a viable solution to mitigate building energy use, there has been limited analysis of its effects under various weather conditions associated with climate change in urban building energy use simulations. Moreover, certain parameters in energy simulations necessitate extensive auditing or survey work, which is often impractical. This research proposes a framework that integrates various datasets, including building footprints, Lidar data, property appraisals, and street view images, to conduct neighborhood-scale building energy use analysis using the Urban Modeling Interface (UMI), an Urban Building Energy Model (UBEM), in a coastal neighborhood in Galveston, Texas. Seven retrofit plans and three weather conditions are considered in the scenarios of building energy use. The results show that decreasing the U-value of building envelopes helps reduce energy use, while increasing the U-value leads to higher energy consumption in the Galveston neighborhood. This finding provides direction for coastal Texas cities, like Galveston, to update building standards and implement retrofit measures. 
    more » « less
  5. Among various elements of urban infrastructure, there is significant opportunity to improve existing buildings’ sustainability, considering that approximately 40% of the total primary energy consumption and 72% of electricity consumption in United States is consumed by the building sector. Many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods serve the role of supporting this effort, by enabling the identification of the potential savings associated with different potential retrofit strategies. However there are many uncertainties that can impact the accuracy of energy model results, one of which is the weather input data. Measured weather data inputs located at each building can help address this concern, however, weather station data collection for each building is also costly and typically not feasible. Some weather station data is already collected, however, these are generally located at airports rather than near buildings, and thus do not capture local, spatially-varying weather conditions which are documented to occur, particularly in urban areas. In this study we address the impact of spatial temperature differences on residential building energy use. An energy model was developed in EnergyPlus for a residential building located in Mueller neighborhood of Austin, TX, and was validated using actual hourly measured electricity consumption. Using the validated model, the impact of measured spatial temperature differences on building energy consumption were investigated using multiple weather stations located throughout the urban area with different urban fractions. The results indicate that energy consumption of a residential building in a city with a 10% higher urban fraction would increase by approximately 10%. This variation in energy consumption is likely due to the impact of UHI effects occurring in urban areas with high densities. 
    more » « less