Abstract A grand challenge to solve a large-scale linear inverse problem (LIP) is to retain computational efficiency and accuracy regardless of the growth of the problem size. Despite the plenitude of methods available for solving LIPs, various challenges have emerged in recent times due to the sheer volume of data, inadequate computational resources to handle an oversized problem, security and privacy concerns, and the interest in the associated incremental or decremental problems. Removing these barriers requires a holistic upgrade of the existing methods to be computationally efficient, tractable, and equipped with scalable features. We, therefore, develop the parallel residual projection (PRP), a parallel computational framework involving the decomposition of a large-scale LIP into sub-problems of low complexity and the fusion of the sub-problem solutions to form the solution to the original LIP. We analyze the convergence properties of the PRP and accentuate its benefits through its application to complex problems of network inference and gravimetric survey. We show that any existing algorithm for solving an LIP can be integrated into the PRP framework and used to solve the sub-problems while handling the prevailing challenges.
more »
« less
Solving, tracking and stopping streaming linear inverse problems
Abstract In large-scale applications including medical imaging, collocation differential equation solvers, and estimation with differential privacy, the underlying linear inverse problem can be reformulated as a streaming problem. In theory, the streaming problem can be effectively solved using memory-efficient, exponentially-converging streaming solvers. In special cases when the underlying linear inverse problem is finite-dimensional, streaming solvers can periodically evaluate the residual norm at a substantial computational cost. When the underlying system is infinite dimensional, streaming solver can only access noisy estimates of the residual. While such noisy estimates are computationally efficient, they are useful only when their accuracy is known. In this work, we rigorously develop a general family of computationally-practical residual estimators and their uncertainty sets for streaming solvers, and we demonstrate the accuracy of our methods on a number of large-scale linear problems. Thus, we further enable the practical use of streaming solvers for important classes of linear inverse problems.
more »
« less
- PAR ID:
- 10517769
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 40
- Issue:
- 8
- ISSN:
- 0266-5611
- Format(s):
- Medium: X Size: Article No. 085003
- Size(s):
- Article No. 085003
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)The multicommodity flow problem is a classic problem in network flow and combinatorial optimization, with applications in transportation, communication, logistics, and supply chain management, etc. Existing algorithms often focus on low-accuracy approximate solutions, while high-accuracy algorithms typically rely on general linear program solvers. In this paper, we present efficient high-accuracy algorithms for a broad family of multicommodity flow problems on undirected graphs, demonstrating improved running times compared to general linear program solvers. Our main result shows that we can solve the 𝓁_{q, p}-norm multicommodity flow problem to a (1 + ε) approximation in time O_{q, p}(m^{1+o(1)} k² log(1/ε)), where k is the number of commodities, and O_{q, p}(⋅) hides constants depending only on q or p. As q and p approach to 1 and ∞ respectively, 𝓁_{q, p}-norm flow tends to maximum concurrent flow. We introduce the first iterative refinement framework for 𝓁_{q, p}-norm minimization problems, which reduces the problem to solving a series of decomposable residual problems. In the case of k-commodity flow, each residual problem can be decomposed into k single commodity convex flow problems, each of which can be solved in almost-linear time. As many classical variants of multicommodity flows were shown to be complete for linear programs in the high-accuracy regime [Ding-Kyng-Zhang, ICALP'22], our result provides new directions for studying more efficient high-accuracy multicommodity flow algorithms.more » « less
-
Deep Learning (DL), in particular deep neural networks (DNN), by default is purely data-driven and in general does not require physics. This is the strength of DL but also one of its key limitations when applied to science and engineering problems in which underlying physical properties—such as stability, conservation, and positivity—and accuracy are required. DL methods in their original forms are not capable of respecting the underlying mathematical models or achieving desired accuracy even in big-data regimes. On the other hand, many data-driven science and engineering problems, such as inverse problems, typically have limited experimental or observational data, and DL would overfit the data in this case. Leveraging information encoded in the underlying mathematical models, we argue, not only compensates missing information in low data regimes but also provides opportunities to equip DL methods with the underlying physics, and hence promoting better generalization. This paper develops a model-constrained deep learning approach and its variant TNet—a Tikhonov neural network—that are capable of learning not only information hidden in the training data but also in the underlying mathematical models to solve inverse problems governed by partial differential equations in low data regimes. We provide the constructions and some theoretical results for the proposed approaches for both linear and nonlinear inverse problems. Since TNet is designed to learn inverse solution with Tikhonov regularization, it is interpretable: in fact it recovers Tikhonov solutions for linear cases while potentially approximating Tikhonov solutions in any desired accuracy for nonlinear inverse problems. We also prove that data randomization can enhance not only the smoothness of the networks but also their generalizations. Comprehensive numerical results confirm the theoretical findings and show that with even as little as 1 training data sample for 1D deconvolution, 5 for inverse 2D heat conductivity problem, 100 for inverse initial conditions for time-dependent 2D Burgers’ equation, and 50 for inverse initial conditions for 2D Navier-Stokes equations, TNet solutions can be as accurate as Tikhonov solutions while being several orders of magnitude faster. This is possible owing to the model-constrained term, replications, and randomization.more » « less
-
Abstract Solving linear systems, often accomplished by iterative algorithms, is a ubiquitous task in science and engineering. To accommodate the dynamic range and precision requirements, these iterative solvers are carried out on floating-point processing units, which are not efficient in handling large-scale matrix multiplications and inversions. Low-precision, fixed-point digital or analog processors consume only a fraction of the energy per operation than their floating-point counterparts, yet their current usages exclude iterative solvers due to the cumulative computational errors arising from fixed-point arithmetic. In this work, we show that for a simple iterative algorithm, such as Richardson iteration, using a fixed-point processor can provide the same convergence rate and achieve solutions beyond its native precision when combined with residual iteration. These results indicate that power-efficient computing platforms consisting of analog computing devices can be used to solve a broad range of problems without compromising the speed or precision.more » « less
-
Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions—the conditional denoising estimator—can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference.more » « less
An official website of the United States government
