skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coarse equivalence versus bijective coarse equivalence of expander graphs
We provide a characterization of when a coarse equivalence between coarse disjoint unions of expander graphs is close to a bijective coarse equivalence. We use this to show that if the uniform Roe algebras over metric spaces that are coarse unions of expanders graphs are isomorphic, then the metric spaces must be bijectively coarsely equivalent.  more » « less
Award ID(s):
2055604 1800322
PAR ID:
10518386
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
SPRINGER
Date Published:
Journal Name:
Mathematische Zeitschrift
Volume:
307
Issue:
3
ISSN:
0025-5874
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a quantization of coarse spaces and uniform Roe algebras. The objects are based on the quantum relations introduced by N. Weaver and require the choice of a represented von Neumann algebra. In the case of the diagonal inclusion ell_infty(X) subset B(ell_2(X)), they reduce to the usual constructions. Quantum metric spaces furnish natural examples parallel to the classical setting, but we provide other examples that are not inspired by metric considerations, including the new class of support expansion C*-algebras. We also work out the basic theory for maps between quantum coarse spaces and their consequences for quantum uniform Roe algebras. 
    more » « less
  2. We prove several results showing that every locally finite Borel graph whose large-scale geometry is ‘tree-like’ induces a treeable equivalence relation. In particular, our hypotheses hold if each component of the original graph either has bounded tree-width or is quasi-isometric to a tree, answering a question of Tucker-Drob. In the latter case, we moreover show that there exists a Borel quasi-isometry to a Borel forest, under the additional assumption of (componentwise) bounded degree. We also extend these results on quasi-treeings to Borel proper metric spaces. In fact, our most general result shows treeability of countable Borel equivalence relations equipped with an abstract wallspace structure on each class obeying some local finiteness conditions, which we call aproper walling. The proof is based on the Stone duality between proper wallings and median graphs (i.e., CAT(0) cube complexes). Finally, we strengthen the conclusion of treeability in these results to hyperfiniteness in the case where the original graph has one (selected) end per component, generalizing the same result for trees due to Dougherty–Jackson–Kechris. 
    more » « less
  3. We generalize the notions of asymptotic dimension and coarse embeddings from metric spaces to quantum metric spaces in the sense of Kuperberg and Weaver [A von Neumann algebra approach to quantum metrics, Mem. Am. Math. Soc. 215(1010) (2012) 1–80]. We show that quantum asymptotic dimension behaves well with respect to metric quotients and direct sums, and is preserved under quantum coarse embeddings. Moreover, we prove that a quantum metric space that equi-coarsely contains a sequence of expanders must have infinite asymptotic dimension. This is done by proving a quantum version of a vertex-isoperimetric inequality for expanders, based upon a previously known edge-isoperimetric one from [K. Temme, M. J. Kastoryano, M. B. Ruskai, M. M. Wolf and F. Verstraete, The [Formula: see text]-divergence and mixing times of quantum Markov processes, J. Math. Phys. 51(12) (2010) 122201]. 
    more » « less
  4. Abstract We study properties of twisted unions of metric spaces introduced in [Johnson, Lindenstrauss, and Schechtman 1986], and in [Naor and Rabani 2017]. In particular, we prove that under certain natural mild assumptions twisted unions of L 1 -embeddable metric spaces also embed in L 1 with distortions bounded above by constants that do not depend on the metric spaces themselves, or on their size, but only on certain general parameters. This answers a question stated in [Naor 2015] and in [Naor and Rabani 2017]. In the second part of the paper we give new simple examples of metric spaces such that their every embedding into L p , 1 ≤ p < ∞, has distortion at least 3, but which are a union of two subsets, each isometrically embeddable in L p . This extends the result of [K. Makarychev and Y. Makarychev 2016] from Hilbert spaces to L p -spaces, 1 ≤ p < ∞. 
    more » « less
  5. For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes under this metric, and show in particular that between any two distinct points in this space there are continuum many geodesic paths. We also study subspaces of the form [Formula: see text] where [Formula: see text] is closed under Turing equivalence, and show that there is a tight connection between topological properties of such a space and computability-theoretic properties of [Formula: see text]. We then define a distance between Turing degrees based on Hausdorff distance in the metric space [Formula: see text]. We adapt a proof of Monin to show that the Hausdorff distances between Turing degrees that occur are exactly 0, [Formula: see text], and 1, and study which of these values occur most frequently in the senses of Lebesgue measure and Baire category. We define a degree a to be attractive if the class of all degrees at distance [Formula: see text] from a has measure 1, and dispersive otherwise. In particular, we study the distribution of attractive and dispersive degrees. We also study some properties of the metric space of Turing degrees under this Hausdorff distance, in particular the question of which countable metric spaces are isometrically embeddable in it, giving a graph-theoretic sufficient condition for embeddability. Motivated by a couple of issues arising in the above work, we also study the computability-theoretic and reverse-mathematical aspects of a Ramsey-theoretic theorem due to Mycielski, which in particular implies that there is a perfect set whose elements are mutually 1-random, as well as a perfect set whose elements are mutually 1-generic. Finally, we study the completeness of [Formula: see text] from the perspectives of computability theory and reverse mathematics. 
    more » « less