With the emergence of versatile storage systems, multi-level checkpointing (MLC) has become a common approach to gain efficiency. However, multi-level checkpoint/restart can cause enormous I/O traffic on HPC systems. To use multilevel checkpointing efficiently, it is important to optimize checkpoint/restart configurations. Current approaches, namely modeling and simulation, are either inaccurate or slow in determining the optimal configuration for a large scale system. In this paper, we show that machine learning models can be used in combination with accurate simulation to determine the optimal checkpoint configurations. We also demonstrate that more advanced techniques such as neural networks can further improve the performance in optimizing checkpoint configurations.
more »
« less
Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication
Writing large amounts of data concurrently to stable storage is a typical I/O pattern of many HPC workflows. This pattern introduces high I/O overheads and results in increased storage space utilization especially for workflows that need to capture the evolution of data structures with high frequency as checkpoints. In this context, many applications, such as graph pattern matching, perform sparse updates to large data structures between checkpoints. For these applications, incremental checkpointing techniques that save only the differences from one checkpoint to another can dramatically reduce the checkpoint sizes, I/O bottlenecks, and storage space utilization. However, such techniques are not without challenges: it is non-trivial to transparently determine what data has changed since a previous checkpoint and assemble the differences in a compact fashion that does not result in excessive metadata. State-of-art data reduction techniques (e.g., compression and de-duplication) have significant limitations when applied to modern HPC applications that leverage GPUs: slow at detecting the differences, generate a large amount of metadata to keep track of the differences, and ignore crucial spatiotemporal checkpoint data redundancy. This paper addresses these challenges by proposing a Merkle tree-based incremental checkpointing method to exploit GPUs’ high memory bandwidth and massive parallelism. Experimental results at scale show a significant reduction of the I/O overhead and space utilization of checkpointing compared with state-of-the-art incremental checkpointing and compression techniques.
more »
« less
- NSF-PAR ID:
- 10518537
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400708435
- Page Range / eLocation ID:
- 665 to 674
- Format(s):
- Medium: X
- Location:
- Salt Lake City UT USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As the amount of data produced by HPC applications reaches the exabyte range, compression techniques are often adopted to reduce the checkpoint time and volume. Since lossless techniques are limited in their ability to achieve appreciable data reduction, lossy compression becomes a preferable option. In this work, a lossy compression technique with highly efficient encoding, purpose-built error control, and high compression ratios is proposed. Specifically, we apply a discrete cosine transform with a novel block decomposition strategy directly to double-precision floating point datasets instead of prevailing prediction-based techniques. Further, we design an adaptive quantization with two specific task-oriented quantizers: guaranteed error bounds and higher compression ratios. Using real-world HPC datasets, our approach achieves 3x-38x compression ratios while guaranteeing specified error bounds, showing comparable performance with state-of-the-art lossy compression methods, SZ and ZFP. Moreover, our method provides viable reconstructed data for various checkpoint/restart scenarios in the FLASH application, thus is considered to be a promising approach for lossy data compression in HPC I/O software stacks.more » « less
-
In the age of big data, deep learning has emerged as a powerful tool to extract insight and exploit its value, both in industry and scientific applications. One common pattern emerging in such applications is frequent checkpointing of the state of the learning model during training, needed in a variety of scenarios: analysis of intermediate states to explain features and correlations with training data, exploration strategies involving alternative models that share a common ancestor, knowledge transfer, resilience, etc. However, with increasing size of the learning models and popularity of distributed data-parallel training approaches, simple checkpointing techniques used so far face several limitations: low serialization performance, blocking I/O, stragglers due to the fact that only a single process is involved in checkpointing. This paper proposes a checkpointing technique specifically designed to address the aforementioned limitations, introducing efficient asynchronous techniques to hide the overhead of serialization and I/O, and distribute the load over all participating processes. Experiments with two deep learning applications (CANDLE and ResNet) on a pre-Exascale HPC platform (Theta) shows significant improvement over state-of-art, both in terms of checkpointing duration and runtime overhead.more » « less
-
null (Ed.)Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality ofmore » « less
-
Error-bounded lossy compression is a state-of-the-art data reduction technique for HPC applications because it not only significantly reduces storage overhead but also can retain high fidelity for postanalysis. Because supercomputers and HPC applications are becoming heterogeneous using accelerator-based architectures, in particular GPUs, several development teams have recently released GPU versions of their lossy compressors. However, existing state-of-the-art GPU-based lossy compressors suffer from either low compression and decompression throughput or low compression quality. In this paper, we present an optimized GPU version, cuSZ, for one of the best error-bounded lossy compressors-SZ. To the best of our knowledge, cuSZ is the first error-bounded lossy compressor on GPUs for scientific data. Our contributions are fourfold. (1) We propose a dual-quantization scheme to entirely remove the data dependency in the prediction step of SZ such that this step can be performed very efficiently on GPUs. (2) We develop an efficient customized Huffman coding for the SZ compressor on GPUs. (3) We implement cuSZ using CUDA and optimize its performance by improving the utilization of GPU memory bandwidth. (4) We evaluate our cuSZ on five real-world HPC application datasets from the Scientific Data Reduction Benchmarks and compare it with other state-of-the-art methods on both CPUs and GPUs. Experiments show that our cuSZ improves SZ's compression throughput by up to 370.1x and 13.1x, respectively, over the production version running on single and multiple CPU cores, respectively, while getting the same quality of reconstructed data. It also improves the compression ratio by up to 3.48x on the tested data compared with another state-of-the-art GPU supported lossy compressor.more » « less