Rigid origami, with applications ranging from nano-robots to unfolding solar sails in space, describes when a material is folded along straight crease line segments while keeping the regions between the creases planar. Prior work has found explicit equations for the folding angles of a flat-foldable degree-4 origami vertex and some cases of degree-6 vertices. We extend this work to generalized symmetries of the degree-6 vertex where all sector angles equal 60 ∘ . We enumerate the different viable rigid folding modes of these degree-6 crease patterns and then use second-order Taylor expansions and prior rigid folding techniques to find algebraic folding angle relationships between the creases. This allows us to explicitly compute the configuration space of these degree-6 vertices, and in the process we uncover new explanations for the effectiveness of Weierstrass substitutions in modelling rigid origami. These results expand the toolbox of rigid origami mechanisms that engineers and materials scientists may use in origami-inspired designs.
more »
« less
A degree theorem for the simplicial closure of Auter Space
The degree of a based graph is the number of essential non-basepoint vertices after generic perturbation. Hatcher–Vogtmann’s degree theorem states that the subcomplex of Auter Space of graphs of degree at most is (d-1)-connected. We extend the definition of degree to the simplicial closure of Auter Space and prove a version of Hatcher–Vogtmann’s result in this context.
more »
« less
- Award ID(s):
- 2348092
- PAR ID:
- 10518743
- Editor(s):
- Sinha, Dev
- Publisher / Repository:
- Homology, Homotopy and Applications
- Date Published:
- Journal Name:
- Homology, Homotopy and Applications
- Volume:
- 26
- Issue:
- 1
- ISSN:
- 1532-0073
- Page Range / eLocation ID:
- 189 to 199
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kumar, Amit; Ron-Zewi, Noga (Ed.)For S ⊆ 𝔽ⁿ, consider the linear space of restrictions of degree-d polynomials to S. The Hilbert function of S, denoted h_S(d,𝔽), is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets S of arbitrary finite grids in 𝔽ⁿ with a fixed size |S|. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size |S|. Understanding the smallest values of Hilbert functions is closely related to the study of degree-d closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-d closures of subsets of 𝔽_qⁿ, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-d closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.more » « less
-
Abstract This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott–Vogelius pair on Clough–Tocher splits. The velocity space consists of continuous piecewise polynomials of degree k , and the pressure space consists of piecewise polynomials of degree ( k – 1) without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise polynomials with respect to the boundary partition is introduced to enforce boundary conditions and to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence-free.more » « less
-
Abstract We construct proper good moduli spaces parametrizing K‐polystable ‐Gorenstein smoothable log Fano pairs , where is a Fano variety and is a rational multiple of the anticanonical divisor. We then establish a wall‐crossing framework of these K‐moduli spaces as varies. The main application in this paper is the case of plane curves of degree as boundary divisors of . In this case, we show that when the coefficient is small, the K‐moduli space of these pairs is isomorphic to the GIT moduli space. We then show that the first wall crossing of these K‐moduli spaces are weighted blow‐ups of Kirwan type. We also describe all wall crossings for degree 4,5,6 and relate the final K‐moduli spaces to Hacking's compactification and the moduli of K3 surfaces.more » « less
An official website of the United States government

