This paper discusses the theory and algorithms for interacting large language model agents (LLMAs) using methods from statistical signal processing and microeconomics. While both fields are mature, their application to decision-making involving interacting LLMAs remains unexplored. Motivated by Bayesian sentiment analysis on online platforms, we construct interpretable models and stochastic control algorithms that enable LLMAs to interact and perform Bayesian inference. Because interacting LLMAs learn from both prior decisions and external inputs, they can exhibit bias and herding behavior. Thus, developing interpretable models and stochastic control algorithms is essential to understand and mitigate these behaviors. This paper has three main results. First, we show using Bayesian revealed preferences from microeconomics that an individual LLMA satisfies the necessary and sufficient conditions for rationally inattentive (bounded rationality) Bayesian utility maximization and, given an observation, the LLMA chooses an action that maximizes a regularized utility. Second, we utilize Bayesian social learning to construct interpretable models for LLMAs that interact sequentially with each other and the environment while performing Bayesian inference. Our proposed models capture the herding behavior exhibited by interacting LLMAs. Third, we propose a stochastic control framework to delay herding and improve state estimation accuracy under two settings: 1) centrally controlled LLMAs and 2) autonomous LLMAs with incentives. Throughout the paper, we numerically demonstrate the effectiveness of our methods on real datasets for hate speech classification and product quality assessment, using open-source models like LLaMA and Mistral and closed-source models like ChatGPT. The main takeaway of this paper, based on substantial empirical analysis and mathematical formalism, is that LLMAs act as rationally bounded Bayesian agents that exhibit social learning when interacting. Traditionally, such models are used in economics to study interacting human decision-makers.
more »
« less
Interpretable Deep Image Classification using Rationally Inattentive Utility Maximization
Can deep convolutional neural networks (CNNs) for image classification be interpreted as utility maximizers with information costs? By performing set-valued system identifica- tion for Bayesian decision systems, we demonstrate that deep CNNs behave equivalently (in terms of necessary and sufficient conditions) to rationally inattentive Bayesian utility maximizers, a generative model used extensively in economics for human decision-making. Our claim is based on approximately 500 numerical experiments on 5 widely used neural network archi- tectures. The parameters of the resulting interpretable model are computed efficiently via convex feasibility algorithms. As a practical application, we also illustrate how the reconstructed interpretable model can predict the classification performance of deep CNNs with high accuracy. The theoretical foundation of our approach lies in Bayesian revealed preference studied in micro-economics. All our results are on GitHub and completely reproducible.
more »
« less
- PAR ID:
- 10518933
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Journal of Selected Topics in Signal Processing
- ISSN:
- 1932-4553
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to climate change and resulting natural disasters, there has been a growing interest in measuring the value of social goods to our society, like environmental conservation. Traditionally, the stated preference, such as contingent valuation, captures an economics-perspective on the value of environmental goods through the willingness to pay (WTP) paradigm. Where the economics theory to estimate the WTP using machine learning is the random utility model. However, the estimation of WTP depends on rather simple preference assumptions based on a linear functional form. These models are therefore unable to capture the complex uncertainty in the human decision-making process. Further, contingent valuation only uses the mean or median estimation of WTP. Yet it has been recognized that other quantiles of the WTP would be valuable to ensure the provision of social goods. In this work, we propose to leverage the Bayesian Deep Learning (BDL) models to capture the uncertainty in stated preference estimation. We focus on the probability of paying for an environmental good and the conditional distribution of WTP. The Bayesian deep learning model connects with the economics theory of the random utility model through the stochastic component on the individual preferences. For testing our proposed model, we work with both synthetic and real-world data. The results on synthetic data suggest the BDL can capture the uncertainty consistently with different distribution of WTP. For the real-world data, a forest conservation contingent valuation survey, we observed a high variability in the distribution of the WTP, suggesting high uncertainty in the individual preferences for social goods. Our research can be used to inform environmental policy, including the preservation of natural resources and other social good.more » « less
-
null (Ed.)We consider a novel application of inverse reinforcement learning with behavioral economics constraints to model, learn and predict the commenting behavior of YouTube viewers. Each group of users is modeled as a rationally inattentive Bayesian agent which solves a contextual bandit problem. Our methodology integrates three key components. First, to identify distinct commenting patterns, we use deep embedded clustering to estimate framing information (essential extrinsic features) that clusters users into distinct groups. Second, we present an inverse reinforcement learning algorithm that uses Bayesian revealed preferences to test for rationality: does there exist a utility function that rationalizes the given data, and if yes, can it be used to predict commenting behavior? Finally, we impose behavioral economics constraints stemming from rational inattention to characterize the attention span of groups of users. The test imposes a Rényi mutual information cost constraint which impacts how the agent can select attention strategies to maximize their expected utility. After a careful analysis of a massive YouTube dataset, our surprising result is that in most YouTube user groups, the commenting behavior is consistent with optimizing a Bayesian utility with rationally inattentive constraints. The paper also highlights how the rational inattention model can accurately predict commenting behavior. The massive YouTube dataset and analysis used in this paper are available on GitHub and completely reproduciblemore » « less
-
Convolutional neural networks (CNNs), a class of deep learning models, have experienced recent success in modeling sensory cortices and retinal circuits through optimizing performance on machine learning tasks, otherwise known as task optimization. Previous research has shown task-optimized CNNs to be capable of providing explanations as to why the retina efficiently encodes natural stimuli and how certain retinal cell types are involved in efficient encoding. In our work, we sought to use task-optimized CNNs as a means of explaining computational mechanisms responsible for motion-selective retinal circuits. We designed a biologically constrained CNN and optimized its performance on a motion-classification task. We drew inspiration from psychophysics, deep learning, and systems neuroscience literature to develop a toolbox of methods to reverse engineer the computational mechanisms learned in our model. Through reverse engineering our model, we proposed a computational mechanism in which direction-selective ganglion cells and starburst amacrine cells, both experimentally observed retinal cell types, emerge in our model to discriminate among moving stimuli. This emergence suggests that direction-selective circuits in the retina are ecologically designed to robustly discriminate among moving stimuli. Our results and methods also provide a framework for how to build more interpretable deep learning models and how to understand them.more » « less
-
The ability for computational agents to reason about the high-level content of real world scene images is important for many applications. Existing attempts at complex scene understanding lack representational power, efficiency, and the ability to create robust meta- knowledge about scenes. We introduce scenarios as a new way of representing scenes. The scenario is an interpretable, low-dimensional, data-driven representation consisting of sets of frequently co-occurring objects that is useful for a wide range of scene under- standing tasks. Scenarios are learned from data using a novel matrix factorization method which is integrated into a new neural network architecture, the Scenari-oNet. Using ScenarioNet, we can recover semantic in- formation about real world scene images at three levels of granularity: 1) scene categories, 2) scenarios, and 3) objects. Training a single ScenarioNet model enables us to perform scene classification, scenario recognition, multi-object recognition, content-based scene image retrieval, and content-based image comparison. ScenarioNet is efficient because it requires significantly fewer parameters than other CNNs while achieving similar performance on benchmark tasks, and it is interpretable because it produces evidence in an understandable format for every decision it makes. We validate the utility of scenarios and ScenarioNet on a diverse set of scene understanding tasks on several benchmark datasets.more » « less
An official website of the United States government

