The ocean’s turbulent energy cycle has a paradox; large-scale eddies under the control of Earth’s rotation transfer kinetic energy (KE) to larger scales via an inverse cascade, while a transfer to smaller scales is needed for dissipation. It has been hypothesized, using simulations, that fronts, waves, and other turbulent structures can produce a forward cascade of KE toward dissipation scales. However, this forward cascade and its coexistence with the inverse cascade have never been observed. Here, we present the first evidence of a dual KE cascade in the ocean by analyzing in situ velocity measurements from surface drifters. Our results show that KE is injected at two dominant scales and transferred to both large and small scales, with the downscale flux dominating at scales smaller than ∼1 to 10 km. The cascade rates are modulated seasonally, with stronger KE injection and downscale transfer during winter.
This content will become publicly available on December 22, 2024
Here, we present an estimate for the ocean's global scale transfer of kinetic energy (KE), across scales from 10 to 40,000 km. Oceanic KE transfer between gyre scales and mesoscales is induced by the atmosphere’s Hadley, Ferrel, and polar cells, and the intertropical convergence zone induces an intense downscale KE transfer. Upscale transfer peaks at 300 gigawatts across mesoscales of 120 km in size, roughly one-third the energy input by winds into the oceanic general circulation. Nearly three quarters of this “cascade” occurs south of 15°S and penetrates almost the entire water column. The mesoscale cascade has a self-similar seasonal cycle with characteristic lag time of ≈27 days per octave of length scales; transfer across 50 km peaks in spring, while transfer across 500 km peaks in summer. KE of those mesoscales follows the same cycle but peaks ≈40 days after the peak cascade, suggesting that energy transferred across a scale is primarily deposited at a scale four times larger.
more » « less- PAR ID:
- 10519041
- Publisher / Repository:
- www.science.org
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 51
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Advent of satellite altimetry brought into focus the pervasiveness of mesoscale eddies
km in size, which are the ocean’s analogue of weather systems and are often regarded as the spectral peak of kinetic energy (KE). Yet, understanding of the ocean’s spatial scales has been derived mostly from Fourier analysis in small representative” regions that cannot capture the vast dynamic range at planetary scales. Here, we use a coarse-graining method to analyze scales much larger than what had been possible before. Spectra spanning over three decades of length-scales reveal the Antarctic Circumpolar Current as the spectral peak of the global extra-tropical circulation, at ≈ 104km, and a previously unobserved power-law scaling over scales larger than 10$${{{{{{{\bf{{{{{{{{\mathcal{O}}}}}}}}}}}}}}}}({100})$$ 3 km. A smaller spectral peak exists at ≈ 300 km associated with mesoscales, which, due to their wider spread in wavenumber space, account for more than 50% of resolved surface KE globally. Seasonal cycles of length-scales exhibit a characteristic lag-time of ≈ 40 days per octave of length-scales such that in both hemispheres, KE at 102km peaks in spring while KE at 103 km peaks in late summer. These results provide a new window for understanding the multiscale oceanic circulation within Earth’s climate system, including the largest planetary scales. -
Abstract Oceanic mesoscale motions including eddies, meanders, fronts, and filaments comprise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the rates of these cascades, remain difficult to directly observe and quantify despite their impacts on physical and biological processes. Here we use global observations to investigate the seasonality of surface kinetic energy and upper-ocean potential energy. We apply spatial filters to along-track satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60–300-km scales. A geographic and scale-dependent seasonal cycle appears throughout much of the midlatitudes, with eddy kinetic energy at scales less than 60 km peaking 1–4 months before that at 60–300-km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived estimate of the conversion of potential to kinetic energy is seasonally varying. In midlatitudes, the conversion rate peaks 0–2 months prior to kinetic energy at scales less than 60 km. The consistent geographic patterns between the seasonality of potential energy conversion and kinetic energy across spatial scale provide observational evidence for the inverse cascade and demonstrate that some component of it is seasonally modulated. Implications for mesoscale parameterizations and numerical modeling are discussed. Significance Statement This study investigates the seasonality of upper-ocean potential and kinetic energy in the context of an inverse cascade, consisting of energy transfers to and through the mesoscale. Observations show a scale-dependent cycle in kinetic energy that coincides with temporal variability in mixed layer potential energy and progresses seasonally from smaller to larger scales. This pattern appears dominant over large regions of the ocean. Results are relevant to ocean and climate models, where a large fraction of ocean energy is often parameterized. A customizable code repository and dataset are provided to enable comparisons of model-based resolved and unresolved kinetic energy to observational equivalents. Implications result for a range of processes including mixed layer stratification and vertical structure of ocean currents.more » « less
-
Abstract The processes leading to the depletion of oceanic mesoscale kinetic energy (KE) and the energization of near‐inertial internal waves are investigated using a suite of realistically forced regional ocean simulations. By carefully modifying the forcing fields we show that solutions where internal waves are forced have ∼
less mesoscale KE compared with solutions where they are not. We apply a coarse‐graining method to quantify the KE fluxes across time scales and demonstrate that the decrease in mesoscale KE is associated with an internal wave‐induced reduction of the inverse energy cascade and an enhancement of the forward energy cascade from sub‐to super‐inertial frequencies. The integrated KE forward transfer rate in the upper ocean is equivalent to half and a quarter of the regionally averaged near‐inertial wind work in winter and summer, respectively, with the strongest fluxes localized at surface submesoscale fronts and filaments. -
Abstract Energy exchanges between large-scale ocean currents and mesoscale eddies play an important role in setting the large-scale ocean circulation but are not fully captured in models. To better understand and quantify the ocean energy cycle, we apply along-isopycnal spatial filtering to output from an isopycnal 1/32° primitive equation model with idealized Atlantic and Southern Ocean geometry and topography. We diagnose the energy cycle in two frameworks: 1) a non-thickness-weighted framework, resulting in a Lorenz-like energy cycle, and 2) a thickness-weighted framework, resulting in the Bleck energy cycle. This paper shows that framework 2 is more useful for studying energy pathways when an isopycnal average is used. Next, we investigate the Bleck cycle as a function of filter scale. Baroclinic conversion generates mesoscale eddy kinetic energy over a wide range of scales and peaks near the deformation scale at high latitudes but below the deformation scale at low latitudes. Away from topography, an inverse cascade transfers kinetic energy from the mesoscales to larger scales. The upscale energy transfer peaks near the energy-containing scale at high latitudes but below the deformation scale at low latitudes. Regions downstream of topography are characterized by a downscale kinetic energy transfer, in which mesoscale eddies are generated through barotropic instability. The scale- and flow-dependent energy pathways diagnosed in this paper provide a basis for evaluating and developing scale- and flow-aware mesoscale eddy parameterizations. Significance Statement Blowing winds provide a major energy source for the large-scale ocean circulation. A substantial fraction of this energy is converted to smaller-scale eddies, which swirl through the ocean as sea cyclones. Ocean turbulence causes these eddies to transfer part of their energy back to the large-scale ocean currents. This ocean energy cycle is not fully simulated in numerical models, but it plays an important role in transporting heat, carbon, and nutrients throughout the world’s oceans. The purpose of this study is to quantify the ocean energy cycle by using fine-scale idealized numerical simulations of the Atlantic and Southern Oceans. Our results provide a basis for how to include unrepresented energy exchanges in coarse global climate models.more » « less