skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using serosurveys to optimize surveillance for zoonotic pathogens
ABSTRACT Zoonotic pathogens pose a significant risk to human health, with spillover into human populations contributing to chronic disease, sporadic epidemics, and occasional pandemics. Despite the widely recognized burden of zoonotic spillover, our ability to identify which animal populations serve as primary reservoirs for these pathogens remains incomplete. This challenge is compounded when prevalence reaches detectable levels only at specific times of year. In these cases, statistical models designed to predict the timing of peak prevalence could guide field sampling for active infections. Here we develop a general model that leverages routinely collected serosurveillance data to optimize sampling for elusive pathogens. Using simulated data sets we show that our methodology reliably identifies times when pathogen prevalence is expected to peak. We then apply our method to two putativeEbolavirusreservoirs, straw-colored fruit bats (Eidolon helvum) and hammer-headed bats (Hypsignathus monstrosus) to predict when these species should be sampled to maximize the probability of detecting active infections. In addition to guiding future sampling of these species, our method yields predictions for the times of year that are most likely to produce future spillover events. The generality and simplicity of our methodology make it broadly applicable to a wide range of putative reservoir species where seasonal patterns of birth lead to predictable, but potentially short-lived, pulses of pathogen prevalence. AUTHOR SUMMARYMany deadly pathogens, such as Ebola, Lassa, and Nipah viruses, originate in wildlife and jump to human populations. When this occurs, human health is at risk. At the extreme, this can lead to pandemics such as the West African Ebola epidemic and the COVID-19 pandemic. Despite the widely recognized risk wildlife pathogens pose to humans, identifying host species that serve as primary reservoirs for many pathogens remains challenging. Ebola is a notable example of a pathogen with an unconfirmed wildlife reservoir. A key obstacle to confirming reservoir hosts is sampling animals with active infections. Often, disease prevalence fluctuates seasonally in wildlife populations and only reaches detectable levels at certain times of year. In these cases, statistical models designed to predict the timing of peak prevalence could guide efficient field sampling for active infections. Therefore, we have developed a general model that uses serological data to predict times of year when pathogen prevalence is likely to peak. We demonstrate with simulated data that our method produces reliable predictions, and then apply our method to two hypothesized reservoirs for Ebola virus, straw-colored fruit bats and hammer-headed bats. Our method can be broadly applied to a range of potential reservoir species where seasonal patterns of birth can lead to predictable pulses of peak pathogen prevalence. Overall, our method can guide future sampling of reservoir populations and can also be used to make predictions for times of year that future outbreaks in human populations are most likely to occur.  more » « less
Award ID(s):
2200140
PAR ID:
10519196
Author(s) / Creator(s):
; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Bats host a number of pathogens that cause severe disease and onward transmission in humans and domestic animals. Some of these pathogens, including henipaviruses and filoviruses, are considered a concern for future pandemics. There has been substantial effort to identify these viruses in bats. However, the reservoir hosts for Ebola virus are still unknown and henipaviruses are largely uncharacterized across their distribution. Identifying reservoir species is critical in understanding the viral ecology within these hosts and the conditions that lead to spillover. We collated surveillance data to identify taxonomic patterns in prevalence and seroprevalence and to assess sampling efforts across species. We systematically collected data on filovirus and henipavirus detections and used a machine-learning algorithm, phylofactorization, in order to search the bat phylogeny for cladistic patterns in filovirus and henipavirus infection, accounting for sampling efforts. Across sampled bat species, evidence for filovirus infection was widely dispersed across the sampled phylogeny. We found major gaps in filovirus sampling in bats, especially in Western Hemisphere species. Evidence for henipavirus infection was clustered within the Pteropodidae; however, no other clades have been as intensely sampled. The major predictor of filovirus and henipavirus exposure or infection was sampling effort. Based on these results, we recommend expanding surveillance for these pathogens across the bat phylogenetic tree. 
    more » « less
  2. Sampling reservoir hosts over time and space is critical to detect epizootics, predict spillover and design interventions. However, because sampling is logistically difficult and expensive, researchers rarely perform spatio-temporal sampling of many reservoir hosts. Bats are reservoirs of many virulent zoonotic pathogens such as filoviruses and henipaviruses, yet the highly mobile nature of these animals has limited optimal sampling of bat populations. To quantify the frequency of temporal sampling and to characterize the geographical scope of bat virus research, we here collated data on filovirus and henipavirus prevalence and seroprevalence in wild bats. We used a phylogenetically controlled meta-analysis to next assess temporal and spatial variation in bat virus detection estimates. Our analysis shows that only one in four bat virus studies report data longitudinally, that sampling efforts cluster geographically (e.g. filovirus data are available across much of Africa and Asia but are absent from Latin America and Oceania), and that sampling designs and reporting practices may affect some viral detection estimates (e.g. filovirus seroprevalence). Within the limited number of longitudinal bat virus studies, we observed high heterogeneity in viral detection estimates that in turn reflected both spatial and temporal variation. This suggests that spatio-temporal sampling designs are important to understand how zoonotic viruses are maintained and spread within and across wild bat populations, which in turn could help predict and preempt risks of zoonotic viral spillover. 
    more » « less
  3. Zoonotic diseases, including those carried by mammalian hosts, pose a significant threat to human health worldwide and substantial investment in wildlife disease surveillance is aimed at identifying the risk of spillover from wildlife to human populations where they interact. However, host species diversity is highest in the most intact habitats away from human habitation and most of the potential host species within these habitats are unsampled for infections. This is particularly true in biodiverse tropical ecosystems where the prevalence and identity of infections are the least known. We screened for presence of trypanosomes in 2,335 specimens from 66 species of rodents and shrews sampled from 11 mountain areas on the tropical island of Sulawesi, Indonesia. Our sampling spanned from the edge of human occupation into the most intact forests available on the island with sampling elevations ranging from 220 to 2,700 m. The two most common Trypanosoma species we detected were a native species from the Theileri clade (19.0 % of samples) and an introduced species from the Lewisi clade (5.1 % of murid rodent samples). Both species were detected at all elevations, extending from village edges to mountain peaks, but both reached their highest prevalence above 2,000 m elevation in the most intact forest away from human habitation. If these patterns with trypanosome infections are typical of other zoonotic diseases, wildlife disease surveillance would need to shift resources to study host-pathogen dynamics in more remote ecosystems. Sampling focused on the breadth of biodiversity, such as collected by and housed in natural history collections, is needed to further our understanding of zoonotic diseases and their prevalence. 
    more » « less
  4. Disease outbreaks and pathogen introductions can have significant effects on host populations, and the ability of pathogens to persist in the environment can exacerbate disease impacts by fueling sustained transmission, seasonal epidemics, and repeated spillover events. While theory suggests that the presence of an environmental reservoir increases the risk of host declines and threat of extinction, the influence of reservoir dynamics on transmission and population impacts remains poorly described. Here we show that the extent of the environmental reservoir explains broad patterns of host infection and the severity of disease impacts of a virulent pathogen. We examined reservoir and host infection dynamics and the resulting impacts of Pseudogymnoascus destructans , the fungal pathogen that causes white-nose syndrome, in 39 species of bats at 101 sites across the globe. Lower levels of pathogen in the environment consistently corresponded to delayed infection of hosts, fewer and less severe infections, and reduced population impacts. In contrast, an extensive and persistent environmental reservoir led to early and widespread infections and severe population declines. These results suggest that continental differences in the persistence or decay of P. destructans in the environment altered infection patterns in bats and influenced whether host populations were stable or experienced severe declines from this disease. Quantifying the impact of the environmental reservoir on disease dynamics can provide specific targets for reducing pathogen levels in the environment to prevent or control future epidemics. 
    more » « less
  5. Abstract The spatial organization of populations determines their pathogen dynamics. This is particularly important for communally roosting species, whose aggregations are often driven by the spatial structure of their environment.We develop a spatially explicit model for virus transmission within roosts of Australian tree‐dwelling bats (Pteropusspp.), parameterized to reflect Hendra virus. The spatial structure of roosts mirrors three study sites, and viral transmission between groups of bats in trees was modelled as a function of distance between roost trees. Using three levels of tree density to reflect anthropogenic changes in bat habitats, we investigate the potential effects of recent ecological shifts in Australia on the dynamics of zoonotic viruses in reservoir hosts.We show that simulated infection dynamics in spatially structured roosts differ from that of mean‐field models for equivalently sized populations, highlighting the importance of spatial structure in disease models of gregarious taxa. Under contrasting scenarios of flying‐fox roosting structures, sparse stand structures (with fewer trees but more bats per tree) generate higher probabilities of successful outbreaks, larger and faster epidemics, and shorter virus extinction times, compared to intermediate and dense stand structures with more trees but fewer bats per tree. These observations are consistent with the greater force of infection generated by structured populations with less numerous but larger infected groups, and may flag an increased risk of pathogen spillover from these increasingly abundant roost types.Outputs from our models contribute insights into the spread of viruses in structured animal populations, like communally roosting species, as well as specific insights into Hendra virus infection dynamics and spillover risk in a situation of changing host ecology. These insights will be relevant for modelling other zoonotic viruses in wildlife reservoir hosts in response to habitat modification and changing populations, including coronaviruses like SARS‐CoV‐2. 
    more » « less