skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Ore-Type Condition for Hamiltonicity in Tough Graphs and the Extremal Examples
Let $$G$$ be a $$t$$-tough graph on $$n\ge 3$$ vertices for some $t>0$. It was shown by Bauer et al. in 1995 that if the minimum degree of $$G$$ is greater than $$\frac{n}{t+1}-1$$, then $$G$$ is hamiltonian. In terms of Ore-type hamiltonicity conditions, the problem was only studied when $$t$$ is between 1 and 2, and recently the second author proved a general result. The result states that if the degree sum of any two nonadjacent vertices of $$G$$ is greater than $$\frac{2n}{t+1}+t-2$$, then $$G$$ is hamiltonian. It was conjectured in the same paper that the $+t$ in the bound $$\frac{2n}{t+1}+t-2$$ can be removed. Here we confirm the conjecture. The result generalizes the result by Bauer, Broersma, van den Heuvel, and Veldman. Furthermore, we characterize all $$t$$-tough graphs $$G$$ on $$n\ge 3$$ vertices for which $$\sigma_2(G) = \frac{2n}{t+1}-2$$ but $$G$$ is non-hamiltonian.  more » « less
Award ID(s):
2345869
PAR ID:
10519423
Author(s) / Creator(s):
;
Publisher / Repository:
The Electronic Journal of Combinatorics
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
31
Issue:
1
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. In this paper, we consider the family of graphs which contain no $$K_{s,t}$$-minor. We show that for any $$t\geq s \geq  2$$ and sufficiently large $$n$$, there is an integer $$\xi_{t}$$ such that the extremal $$n$$-vertex $$K_{s,t}$$-minor-free graph attaining the maximum spread is the graph obtained by joining a graph $$L$$ on $(s-1)$ vertices to the disjoint union of $$\lfloor \frac{2n+\xi_{t}}{3t}\rfloor$$ copies of $$K_t$$ and $$n-s+1 - t\lfloor \frac{2n+\xi_t}{3t}\rfloor$$ isolated vertices. Furthermore, we give an explicit formula for $$\xi_{t}$$ and an explicit description for the graph $$L$$ for $$t \geq \frac32(s-3) +\frac{4}{s-1}$$. 
    more » « less
  2. Abstract We suggest two related conjectures dealing with the existence of spanning irregular subgraphs of graphs. The first asserts that any $$d$$ -regular graph on $$n$$ vertices contains a spanning subgraph in which the number of vertices of each degree between $$0$$ and $$d$$ deviates from $$\frac{n}{d+1}$$ by at most $$2$$ . The second is that every graph on $$n$$ vertices with minimum degree $$\delta$$ contains a spanning subgraph in which the number of vertices of each degree does not exceed $$\frac{n}{\delta +1}+2$$ . Both conjectures remain open, but we prove several asymptotic relaxations for graphs with a large number of vertices $$n$$ . In particular we show that if $$d^3 \log n \leq o(n)$$ then every $$d$$ -regular graph with $$n$$ vertices contains a spanning subgraph in which the number of vertices of each degree between $$0$$ and $$d$$ is $$(1+o(1))\frac{n}{d+1}$$ . We also prove that any graph with $$n$$ vertices and minimum degree $$\delta$$ contains a spanning subgraph in which no degree is repeated more than $$(1+o(1))\frac{n}{\delta +1}+2$$ times. 
    more » « less
  3. Abstract Let $$\gamma(G)$$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n -vertex graph of minimum degree at least d , then $$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$ In this paper the main result is that if G is any n -vertex d -regular graph of girth at least five, then $$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$ for some constant c independent of d . This result is sharp in the sense that as $$d \rightarrow \infty$$ , almost all d -regular n -vertex graphs G of girth at least five have $$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$ Furthermore, if G is a disjoint union of $${n}/{(2d)}$$ complete bipartite graphs $$K_{d,d}$$ , then $${\gamma_\circ}(G) = \frac{n}{2}$$ . We also prove that there are n -vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that $${\gamma_\circ}(G) \sim {n}/{2}$$ as $$d \rightarrow \infty$$ . Therefore both the girth and regularity conditions are required for the main result. 
    more » « less
  4. We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3-uniform hypergraph without isolated vertex. Suppose that $$H$$ is a 3-uniform hypergraph whose order $$n$$ is sufficiently large and divisible by $$3$$. If $$H$$ contains no isolated vertex and $$\deg(u)+\deg(v) > \frac{2}{3}n^2-\frac{8}{3}n+2$$ for any two vertices $$u$$ and $$v$$ that are contained in some edge of $$H$$, then $$H$$ contains a perfect matching. This bound is tight and the (unique) extremal hyergraph is a different \emph{space barrier} from the one for the corresponding Dirac problem. 
    more » « less
  5. Given any graph G G , the spread of G G is the maximum difference between any two eigenvalues of the adjacency matrix of G G . In this paper, we resolve a pair of 20-year-old conjectures of Gregory, Hershkowitz, and Kirkland regarding the spread of graphs. The first states that for all positive integers n n , the n n -vertex graph G G that maximizes spread is the join of a clique and an independent set, with ⌊ 2 n / 3 ⌋ \lfloor 2n/3 \rfloor and ⌈ n / 3 ⌉ \lceil n/3 \rceil vertices, respectively. Using techniques from the theory of graph limits and numerical analysis, we prove this claim for all n n sufficiently large. As an intermediate step, we prove an analogous result for a family of operators in the Hilbert space over L 2 [ 0 , 1 ] \mathscr {L}^2[0,1] . The second conjecture claims that for any fixed m ≤ n 2 / 4 m \leq n^2/4 , if G G maximizes spread over all n n -vertex graphs with m m edges, then G G is bipartite. We prove an asymptotic version of this conjecture. Furthermore, we construct an infinite family of counterexamples, which shows that our asymptotic solution is tight up to lower-order error terms. 
    more » « less