Abstract We introduce the National Science Foundation (NSF) AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES). This AI institute was funded in 2020 as part of a new initiative from the NSF to advance foundational AI research across a wide variety of domains. To date AI2ES is the only NSF AI institute focusing on environmental science applications. Our institute focuses on developing trustworthy AI methods for weather, climate, and coastal hazards. The AI methods will revolutionize our understanding and prediction of high-impact atmospheric and ocean science phenomena and will be utilized by diverse, professional user groups to reduce risks to society. In addition, we are creating novel educational paths, including a new degree program at a community college serving underrepresented minorities, to improve workforce diversity for both AI and environmental science. 
                        more » 
                        « less   
                    
                            
                            The value of convergence research for developing trustworthy AI for weather, climate, and ocean hazards
                        
                    
    
            Abstract Artificial Intelligence applications are rapidly expanding across weather, climate, and natural hazards. AI can be used to assist with forecasting weather and climate risks, including forecasting both the chance that a hazard will occur and the negative impacts from it, which means AI can help protect lives, property, and livelihoods on a global scale in our changing climate. To ensure that we are achieving this goal, the AI must be developed to be trustworthy, which is a complex and multifaceted undertaking. We present our work from the NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES), where we are taking a convergence research approach. Our work deeply integrates across AI, environmental, and risk communication sciences. This involves collaboration with professional end-users to investigate how they assess the trustworthiness and usefulness of AI methods for forecasting natural hazards. In turn, we use this knowledge to develop AI that is more trustworthy. We discuss how and why end-users may trust or distrust AI methods for multiple natural hazards, including winter weather, tropical cyclones, severe storms, and coastal oceanography. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2019758
- PAR ID:
- 10519740
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Natural Hazards
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2948-2100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) focuses on creating trustworthy AI for a variety of environmental and Earth science phenomena. AI2ES includes leading experts from AI, atmospheric and ocean science, risk communication, and education, who work synergistically to develop and test trustworthy AI methods that transform our understanding and prediction of the environment. Trust is a social phenomenon, and our integration of risk communication research across AI2ES activities provides an empirical foundation for developing user‐informed, trustworthy AI. AI2ES also features activities to broaden participation and for workforce development that are fully integrated with AI2ES research on trustworthy AI, environmental science, and risk communication.more » « less
- 
            Abstract We present an overview of recent work on using artificial intelligence (AI)/machine learning (ML) techniques for forecasting convective weather and its associated hazards, including tornadoes, hail, wind, and lightning. These high-impact phenomena globally cause both massive property damage and loss of life, yet they are very challenging to forecast. Given the recent explosion in developing ML techniques across the weather spectrum and the fact that the skillful prediction of convective weather has immediate societal benefits, we present a thorough review of the current state of the art in AI and ML techniques for convective hazards. Our review includes both traditional approaches, including support vector machines and decision trees, as well as deep learning approaches. We highlight the challenges in developing ML approaches to forecast these phenomena across a variety of spatial and temporal scales. We end with a discussion of promising areas of future work for ML for convective weather, including a discussion of the need to create trustworthy AI forecasts that can be used for forecasters in real time and the need for active cross-sector collaboration on testbeds to validate ML methods in operational situations. Significance StatementWe provide an overview of recent machine learning research in predicting hazards from thunderstorms, specifically looking at lightning, wind, hail, and tornadoes. These hazards kill people worldwide and also destroy property and livestock. Improving the prediction of these events in both the local space as well as globally can save lives and property. By providing this review, we aim to spur additional research into developing machine learning approaches for convective hazard prediction.more » « less
- 
            Abstract As artificial intelligence (AI) methods are increasingly used to develop new guidance intended for operational use by forecasters, it is critical to evaluate whether forecasters deem the guidance trustworthy. Past trust-related AI research suggests that certain attributes (e.g., understanding how the AI was trained, interactivity, and performance) contribute to users perceiving the AI as trustworthy. However, little research has been done to examine the role of these and other attributes for weather forecasters. In this study, we conducted 16 online interviews with National Weather Service (NWS) forecasters to examine (i) how they make guidance use decisions and (ii) how the AI model technique used, training, input variables, performance, and developers as well as interacting with the model output influenced their assessments of trustworthiness of new guidance. The interviews pertained to either a random forest model predicting the probability of severe hail or a 2D convolutional neural network model predicting the probability of storm mode. When taken as a whole, our findings illustrate how forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically or at first introduction. We recommend developers center end users when creating new AI guidance tools, making end users integral to their thinking and efforts. This approach is essential for the development of useful andusedtools. The details of these findings can help AI developers understand how forecasters perceive AI guidance and inform AI development and refinement efforts. Significance StatementWe used a mixed-methods quantitative and qualitative approach to understand how National Weather Service (NWS) forecasters 1) make guidance use decisions within their operational forecasting process and 2) assess the trustworthiness of prototype guidance developed using artificial intelligence (AI). When taken as a whole, our findings illustrate that forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically and suggest that developers must center the end user when creating new AI guidance tools to ensure that the developed tools are useful andused.more » « less
- 
            This project developed a pre-interview survey, interview protocols, and materials for conducting interviews with expert users to better understand how they assess and make use decisions about new AI/ML guidance. Weather forecasters access and synthesize myriad sources of information when forecasting for high-impact, severe weather events. In recent years, artificial intelligence (AI) techniques have increasingly been used to produce new guidance tools with the goal of aiding weather forecasting, including for severe weather. For this study, we leveraged these advances to explore how National Weather Service (NWS) forecasters perceive the use of new AI guidance for forecasting severe hail and storm mode. We also specifically examine which guidance features are important for how forecasters assess the trustworthiness of new AI guidance. To this aim, we conducted online, structured interviews with NWS forecasters from across the Eastern, Central, and Southern Regions. The interviews covered the forecasters’ approaches and challenges for forecasting severe weather, perceptions of AI and its use in forecasting, and reactions to one of two experimental (i.e., non-operational) AI severe weather guidance: probability of severe hail or probability of storm mode. During the interview, the forecasters went through a self-guided review of different sets of information about the development (spin-up information, AI model technique, training of AI model, input information) and performance (verification metrics, interactive output, output comparison to operational guidance) of the presented guidance. The forecasters then assessed how the information influenced their perception of how trustworthy the guidance was and whether or not they would consider using it for forecasting. This project includes the pre-interview survey, survey data, interview protocols, and accompanying information boards used for the interviews. There is one set of interview materials in which AI/ML are mentioned throughout and another set where AI/ML were only mentioned at the end of the interviews. We did this to better understand how the label “AI/ML” did or did not affect how interviewees responded to interview questions and reviewed the information board. We also leverage think aloud methods with the information board, the instructions for which are included in the interview protocols.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
