skip to main content


Title: AI2ES: The NSF AI Institute for Research on Trustworthy AI for Weather, Climate, and Coastal Oceanography
Abstract

The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) focuses on creating trustworthy AI for a variety of environmental and Earth science phenomena. AI2ES includes leading experts from AI, atmospheric and ocean science, risk communication, and education, who work synergistically to develop and test trustworthy AI methods that transform our understanding and prediction of the environment. Trust is a social phenomenon, and our integration of risk communication research across AI2ES activities provides an empirical foundation for developing user‐informed, trustworthy AI. AI2ES also features activities to broaden participation and for workforce development that are fully integrated with AI2ES research on trustworthy AI, environmental science, and risk communication.

 
more » « less
Award ID(s):
2019758 2324008
PAR ID:
10490849
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AI Magazine
ISSN:
0738-4602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce the National Science Foundation (NSF) AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES). This AI institute was funded in 2020 as part of a new initiative from the NSF to advance foundational AI research across a wide variety of domains. To date AI2ES is the only NSF AI institute focusing on environmental science applications. Our institute focuses on developing trustworthy AI methods for weather, climate, and coastal hazards. The AI methods will revolutionize our understanding and prediction of high-impact atmospheric and ocean science phenomena and will be utilized by diverse, professional user groups to reduce risks to society. In addition, we are creating novel educational paths, including a new degree program at a community college serving underrepresented minorities, to improve workforce diversity for both AI and environmental science. 
    more » « less
  2. Abstract

    Artificial Intelligence applications are rapidly expanding across weather, climate, and natural hazards. AI can be used to assist with forecasting weather and climate risks, including forecasting both the chance that a hazard will occur and the negative impacts from it, which means AI can help protect lives, property, and livelihoods on a global scale in our changing climate. To ensure that we are achieving this goal, the AI must be developed to be trustworthy, which is a complex and multifaceted undertaking. We present our work from the NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES), where we are taking a convergence research approach. Our work deeply integrates across AI, environmental, and risk communication sciences. This involves collaboration with professional end-users to investigate how they assess the trustworthiness and usefulness of AI methods for forecasting natural hazards. In turn, we use this knowledge to develop AI that is more trustworthy. We discuss how and why end-users may trust or distrust AI methods for multiple natural hazards, including winter weather, tropical cyclones, severe storms, and coastal oceanography.

     
    more » « less
  3. Abstract Many of our generation’s most pressing environmental science problems are wicked problems, which means they cannot be cleanly isolated and solved with a single ‘correct’ answer (e.g., Rittel 1973; Wirz 2021). The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) seeks to address such problems by developing synergistic approaches with a team of scientists from three disciplines: environmental science (including atmospheric, ocean, and other physical sciences), AI, and social science including risk communication. As part of our work, we developed a novel approach to summer school, held from June 27-30, 2022. The goal of this summer school was to teach a new generation of environmental scientists how to cross disciplines and develop approaches that integrate all three disciplinary perspectives and approaches in order to solve environmental science problems. In addition to a lecture series that focused on the synthesis of AI, environmental science, and risk communication, this year’s summer school included a unique Trust-a-thon component where participants gained hands-on experience applying both risk communication and explainable AI techniques to pre-trained ML models. We had 677 participants from 63 countries register and attend online. Lecture topics included trust and trustworthiness (Day 1), explainability and interpretability (Day 2), data and workflows (Day 3), and uncertainty quantification (Day 4). For the Trust-a-thon we developed challenge problems for three different application domains: (1) severe storms, (2) tropical cyclones, and (3) space weather. Each domain had associated user persona to guide user-centered development. 
    more » « less
  4. Abstract

    Demands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda. Evidential and conceptual histories of research on trust and trustworthiness reveal persisting ambiguities and measurement shortcomings related to inconsistent attention to the contextual and social dependencies and dynamics of trust. Potentially underappreciated in the development of trustworthy AI for environmental sciences is the importance of engaging AI users and other stakeholders, which human–AI teaming perspectives on AI development similarly underscore. Co‐development strategies may also help reconcile efforts to develop performance‐based trustworthiness standards with dynamic and contextual notions of trust. We illustrate the importance of these themes with applied examples and show how insights from research on trust and the communication of risk and uncertainty can help advance the understanding of trust and trustworthiness of AI in the environmental sciences.

     
    more » « less
  5. Abstract

    Designing effective and inclusive governance and public communication strategies for artificial intelligence (AI) requires understanding how stakeholders reason about its use and governance. We examine underlying factors and mechanisms that drive attitudes toward the use and governance of AI across six policy-relevant applications using structural equation modeling and surveys of both US adults (N = 3,524) and technology workers enrolled in an online computer science master’s degree program (N = 425). We find that the cultural values of individualism, egalitarianism, general risk aversion, and techno-skepticism are important drivers of AI attitudes. Perceived benefit drives attitudes toward AI use but not its governance. Experts hold more nuanced views than the public and are more supportive of AI use but not its regulation. Drawing on these findings, we discuss challenges and opportunities for participatory AI governance, and we recommend that trustworthy AI governance be emphasized as strongly as trustworthy AI.

     
    more » « less