Additive manufacturing (AM) has the potential for improving the sustainability of metal processing through decreased energy and materials usage compared to casting and forging. Laser powder bed fusion (LPBF) of high-temperature alloys such as nickel alloy 718 is one of the key modalities supporting this effort. One of the major drawbacks to LPBF is its slow build speed on the order of 5–10 cubic centimeters per hour print speed. This experimental study investigates how to increase the productivity of the LPBF process by switching from a traditional Gaussian laser shape to a ring laser shape using a nLight multi-modal laser. The objective is to increase productivity, reducing energy consumption and time, without sacrificing mechanical properties by switching to the ring laser thereby improving the sustainability of LPBF. Results include measuring the energy consumption of an Open Additive LPBF system during 718 printing and comparing the microstructure and mechanical properties of the two different lasers.
more »
« less
Fast-throughput simulations of laser-based additive manufacturing in metals to study the influence of processing parameters on mechanical properties
Laser-powder bed fusion additive manufacturing (LPBF-AM) of metals is rapidly becoming one of the most important materials processing pathways for next-generation metallic parts and components in a number of important applications. However, the large parametric space that characterizes laser-based LPBF-AM makes it challenging to understand what are the variables controlling the microstructural and mechanical property outcomes. Sensitivity studies based on direct LPBF-AM processing are costly and lengthy to conduct, and are subjected to the specifications and variability of each printer. Here we develop a fast-throughput numerical approach that simulates the LPBF-AM process using a cellular automaton model of dynamic solidification and grain growth. This is accompanied by a polycrystal plasticity model that captures grain boundary strengthening due to complex grain geometry and furnishes the stress-strain curves of the resulting microstructures. Our approach connects the processing stage with the mechanical testing stage, thus capturing the effect of processing variables such as the laser power, laser spot size, scan speed, and hatch width on the yield strength and tangent moduli of the processed materials. When applied to pure Cu and stainless 316L steel, we find that laser power and scan speed have the strongest influence on grain size in each material, respectively.
more »
« less
- Award ID(s):
- 2104933
- PAR ID:
- 10519957
- Editor(s):
- Schultz, Christian
- Publisher / Repository:
- ScienceDirect
- Date Published:
- Journal Name:
- Heliyon
- Edition / Version:
- 2.0
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2405-8440
- Page Range / eLocation ID:
- e23202
- Subject(s) / Keyword(s):
- Laser additive manufacturing Multiscale modeling Crystal plasticity Cellular automaton Stainless steel Copper 316L Hall-Petch effect
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PurposeThe ability to use laser powder bed fusion (LPBF) to print parts with tailored surface topography could reduce the need for costly post-processing. However, characterizing the as-built surface topography as a function of process parameters is crucial to establishing linkages between process parameters and surface topography and is currently not well understood. The purpose of this study is to measure the effect of different LPBF process parameters on the as-built surface topography of Inconel 718 parts. Design/methodology/approachInconel 718 truncheon specimens with different process parameters, including single- and double contour laser pass, laser power, laser scan speed, build orientation and characterize their as-built surface topography using deterministic and areal surface topography parameters are printed. The effect of both individual process parameters, as well as their interactions, on the as-built surface topography are evaluated and linked to the underlying physics, informed by surface topography data. FindingsDeterministic surface topography parameters are more suitable than areal surface topography parameters to characterize the distinct features of the as-built surfaces that result from LPBF. The as-built surface topography is strongly dependent on the built orientation and is dominated by the staircase effect for shallow orientations and partially fused metal powder particles for steep orientations. Laser power and laser scan speed have a combined effect on the as-built surface topography, even when maintaining constant laser energy density. Originality/valueThis work addresses two knowledge gaps. (i) It introduces deterministic instead of areal surface topography parameters to unambiguously characterize the as-built LPBF surfaces. (ii) It provides a methodical study of the as-built surface topography as a function of individual LPBF process parameters and their interaction effects.more » « less
-
Abstract Modeling and simulation for additive manufacturing (AM) are critical enablers for understanding process physics, conducting process planning and optimization, and streamlining qualification and certification. It is often the case that a suite of hierarchically linked (or coupled) simulation models is needed to achieve the above tasks, as the entirety of the complex physical phenomena relevant to the understanding of process-structure-property-performance relationships in the context of AM precludes the use of a single simulation framework. In this study using a Bayesian network approach, we address the important problem of conducting uncertainty quantification (UQ) analysis for multiple hierarchical models to establish process-microstructure relationships in laser powder bed fusion (LPBF) AM. More significantly, we present the framework to calibrate and analyze simulation models that have experimentally unmeasurable variables, which are quantities of interest predicted by an upstream model and deemed necessary for the downstream model in the chain. We validate the framework using a case study on predicting the microstructure of a binary nickel-niobium alloy processed using LPBF as a function of processing parameters. Our framework is shown to be able to predict segregation of niobium with up to 94.3% prediction accuracy on test data.more » « less
-
Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.more » « less
-
Nickel-based alloys, Alloys 625 and 718, are widely used in the aerospace industry due to their excellent corrosion resistance and high strength at elevated temperatures. Recently, these alloys have been utilized to manufacture rocket engine components using additive manufacturing (AM) technologies such as laser powder bed fusion (LPBF) and powder-blown laser-based directed energy deposition (DED). These technologies offer faster and more cost-effective production while enabling the fabrication of near-net-shape parts that are subsequently joined by welding. However, solidification cracking susceptibility varies significantly between AM and conventionally processed materials, and limited weldability characterization has been conducted on AM-fabricated materials. This study assesses the weld solidification cracking susceptibility of Alloys 625 and 718 produced by wrought (mill-rolled), LPBF, and DED using transverse varestraint testing, Scheil-Gulliver simulations, the Crack Susceptibility Index (CSI), and the Flow Resistance Index (FRI). Transverse varestraint testing revealed that AM parts exhibited higher susceptibility due to the presence of larger and elongated grains in the fusion zone, affecting the weld solidification cracking response. In Alloy 625, the LPBF condition exhibited the highest maximum crack distance (MCD) of 2.35 ± 0.16 mm, compared to 1.56 ± 0.06 mm for wrought and 1.72 ± 0.10 mm for DED. Similarly, in Alloy 718, the DED condition showed the highest MCD of 2.93 ± 0.41 mm, while the wrought condition had an MCD of 2.01 ± 0.12 mm, and the LPBF condition reached 3.01 ± 0.33 mm at 5 % strain, without a clearly defined saturation strain. Although wrought materials demonstrated greater resistance to solidification cracking, solidification simulations did not correlate with the experimental testing, as they do not account for microstructural and mechanical factors, relying solely on chemistry.more » « less
An official website of the United States government

