A<sc>bstract</sc> Symmetry algebras deriving from towers of soft theorems can be deformed by a short list of higher-dimension Wilsonian corrections to the effective action. We study the simplest of these deformations in gauge theory arising from a massless complex scalar coupled toF2. The soft gauge symmetry ‘s-algebra’, compactly realized as a higher-spin current algebra acting on the celestial sphere, is deformed and enlarged to an associative algebra containing soft scalar generators. This deformed soft algebra is found to be non-abelian even in abelian gauge theory. A two-parameter family of central extensions of thes-subalgebra are generated by shifting and decoupling the scalar generators. It is shown that these central extensions can also be generated by expanding around a certain non-trivial but Lorentz invariant shockwave type background for the scalar field.
more »
« less
W(1+infinity) Algebra with a Cosmological Constant and the Celestial Sphere
It is shown that there exists a simple deformed version of Strominger’s infinite-dimensional w(1+infinity) algebra of soft graviton symmetries, which we conjecture to arise in spacetimes with a nonvanishing cosmological constant. The deformed algebra contains a subalgebra generating SO(1,4) or SO(2,3) symmetry groups of dS4 or AdS4, depending on the sign of the cosmological constant. The transformation properties of soft gauge symmetry currents under the deformed w(1+infinity) are also discussed.
more »
« less
- Award ID(s):
- 2209903
- PAR ID:
- 10520425
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 132
- Issue:
- 22
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> In four-dimensional asymptotically flat spacetimes, an infinite tower of soft graviton modes is known to generate the symmetry algebra of w1+∞ at tree-level. Here we demonstrate that the symmetry action follows from soft graviton theorems and acts non-trivially on massive scalar particles. By generalizing previous analyses that were specifically tailored to the scattering of massless particles, our results clarify that w1+∞ symmetry is a universal feature of tree-level gravitational scattering in four-dimensional asymptotically flat spacetimes and originates from minimally-coupled gravitational interactions. In addition, we show that the w1+∞ symmetry acts non-diagonally on massive states by mixing an infinite number of conformal families. We also present a concrete example of non-local behavior on the celestial sphere in the presence of massive scattering states.more » « less
-
null (Ed.)A bstract We study two-dimensional celestial conformal field theory describing four- dimensional $$ \mathcal{N} $$ N =1 supergravity/Yang-Mills systems and show that the underlying symmetry is a supersymmetric generalization of BMS symmetry. We construct fermionic conformal primary wave functions and show how they are related via supersymmetry to their bosonic partners. We use soft and collinear theorems of supersymmetric Einstein-Yang- Mills theory to derive the OPEs of the operators associated to massless particles. The bosonic and fermionic soft theorems are shown to form a sequence under supersymmetric Ward identities. In analogy with the energy momentum tensor, the supercurrents are shadow transforms of soft gravitino operators and generate an infinite-dimensional super- symmetry algebra. The algebra of $$ {\mathfrak{sbms}}_4 $$ sbms 4 generators agrees with the expectations based on earlier work on the asymptotic symmetry group of supergravity. We also show that the supertranslation operator can be written as a product of holomorphic and anti-holomorphic supercurrents.more » « less
-
A<sc>bstract</sc> In this paper, we analyze the loop corrections to celestial OPE for gluons and gravitons. Even at the loop level, the soft gluons and gravitons have conformal dimensions ∆ = 1−$${\mathbb{Z}}_{\ge 0}$$. The only novelty is the presence of higher poles. At one loop level, there are two types of conformal soft gluons with a single pole and a double pole in the ∆ plane. The celestial OPEs are obtained using the collinear splitting functions. In the case of gluons, the splitting functions receive loop corrections. After taking the holomorphic soft limit, we find the OPE of conformal soft gluons. We find a novel mixing of simple and double poles soft gluon operators in the OPE. In the case of gravitons, where splitting functions are known to be all loop exact, we still find a wedge algebra ofw∞which is in addition to the wedge algebra ofw1+∞already found by Strominger.more » « less
-
Abstract In this paper, we construct the phase space of a constantly curved tetrahedron with fixed triangle areas in terms of a pair of Darboux coordinates called the length and twist coordinates, which are in analogy to the Fenchel-Nielsen coordinates for flat connections, and their quantization. The curvature is identified to the value of the cosmological constant, either positive or negative. The physical Hilbert space is given by the $$\mathcal{U}_q(\mathfrak{su}(2))$$ intertwiner space. We show that the quantum trace of quantum monodromies, defining the quantum length operators, form a fusion algebra and describe their representation theory. We also construct the coherent states in the physical Hilbert space labeled by the length and twist coordinates. These coherent states describe quantum curved tetrahedra and peak at points of the tetrahedron phase space. This work is closely related to 3+1 dimensional Loop Quantum Gravity with a non-vanishing cosmological constant. The coherent states constructed herein serve as good candidates for the application to the spinfoam model with a cosmological constant.more » « less
An official website of the United States government

