skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum Curved Tetrahedron, Quantum Group Intertwiner Space, and Coherent States
Abstract In this paper, we construct the phase space of a constantly curved tetrahedron with fixed triangle areas in terms of a pair of Darboux coordinates called the length and twist coordinates, which are in analogy to the Fenchel-Nielsen coordinates for flat connections, and their quantization. The curvature is identified to the value of the cosmological constant, either positive or negative. The physical Hilbert space is given by the $$\mathcal{U}_q(\mathfrak{su}(2))$$ intertwiner space. We show that the quantum trace of quantum monodromies, defining the quantum length operators, form a fusion algebra and describe their representation theory. We also construct the coherent states in the physical Hilbert space labeled by the length and twist coordinates. These coherent states describe quantum curved tetrahedra and peak at points of the tetrahedron phase space. This work is closely related to 3+1 dimensional Loop Quantum Gravity with a non-vanishing cosmological constant. The coherent states constructed herein serve as good candidates for the application to the spinfoam model with a cosmological constant.  more » « less
Award ID(s):
2110234
PAR ID:
10571708
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
ISSN:
0264-9381
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we develop a quantum theory of homogeneously curved tetrahedron geometry, by applying the combinatorial quantization to the phase space of tetrahedron shapes defined in Haggardet al(2016Ann. Henri Poincaré172001–48). Our method is based on the relation between this phase space and the moduli space of SU(2) flat connections on a 4-punctured sphere. The quantization results in the physical Hilbert space as the solution of the quantum closure constraint, which quantizes the classical closure condition M 4 M 3 M 2 M 1 = 1 , M ν SU ( 2 ) , for the homogeneously curved tetrahedron. The quantum group U q ( su ( 2 ) ) emerges as the gauge symmetry of a quantum tetrahedron. The physical Hilbert space of the quantum tetrahedron coincides with the Hilbert space of 4-valent intertwiners of U q ( su ( 2 ) ) . In addition, we define the area operators quantizing the face areas of the tetrahedron and compute the spectrum. The resulting spectrum is consistent with the usual Loop-Quantum-Gravity area spectrum in the large spin regime but is different for small spins. This work closely relates to 3+1 dimensional Loop Quantum Gravity in presence of cosmological constant and provides a justification for the emergence of quantum group in the theory. 
    more » « less
  2. In quantum computing and information technology, the coherent superposition of states is an essential topic for realizing the physical state of data processing and storage. The fundamentals of current technology, a quantum bit, have limitations due to the collapse and decoherence of wave function, which hinders the superposition of states. We eliminate the limitations by introducing the elastic bit generated through the Hertz-type nonlinearity of granular beads. This study shows the experimental formation of the elastic bit in a coupled granular network manipulated by external harmonic excitation. The excitation generates a phase-dependent dynamic movement, and mapping onto the energy states of the linear vibration modes forms the coherent superposition of states. This state vector component comes from the amplitude of the coherent states, which is projected into the Hilbert space through time dependency. The coherent states represent an actual amplitude, which makes the elastic bit susceptible to decoherence. The elastic bit also demonstrates quantum operation, showcasing the Hadamard gate, which maps one superposed state to another. These characteristics of the elastic bit pave the way for sustainable quantum computation and data storage. 
    more » « less
  3. The dynamics of quantum systems unfolds within a subspace of the state space or operator space, known as the Krylov space. This review presents the use of Krylov subspace methods to provide an efficient description of quantum evolution and quantum chaos, with emphasis on nonequilibrium phenomena of many-body systems with a large Hilbert space. It provides a comprehensive update of recent developments, focused on the quantum evolution of operators in the Heisenberg picture as well as pure and mixed states. It further explores the notion of Krylov complexity and associated metrics as tools for quantifying operator growth, their bounds by generalized quantum speed limits, the universal operator growth hypothesis, and its relation to quantum chaos, scrambling, and generalized coherent states. A comparison of several generalizations of the Krylov construction for open quantum systems is presented. A closing discussion addresses the application of Krylov subspace methods in quantum field theory, holog- raphy, integrability, quantum control, and quantum computing, as well as current open problems. 
    more » « less
  4. The control of nonequilibrium quantum dynamics in many-body systems is challenging because interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate nonequilibrium dynamics after rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating new ways to steer complex dynamics in many-body systems and enabling potential applications in quantum information science. 
    more » « less
  5. A basic question in the theory of fault-tolerant quantum computation is to understand the fundamental resource costs for performing a universal logical set of gates on encoded qubits to arbitrary accuracy. Here we consider qubits encoded with constant space overhead (i.e. finite encoding rate) in the limit of arbitrarily large code distance d through the use of topological codes associated to triangulations of hyperbolic surfaces. We introduce explicit protocols to demonstrate how Dehn twists of the hyperbolic surface can be implemented on the code through constant depth unitary circuits, without increasing the space overhead. The circuit for a given Dehn twist consists of a permutation of physical qubits, followed by a constant depth local unitary circuit, where locality here is defined with respect to a hyperbolic metric that defines the code. Applying our results to the hyperbolic Fibonacci Turaev-Viro code implies the possibility of applying universal logical gate sets on encoded qubits through constant depth unitary circuits and with constant space overhead. Our circuits are inherently protected from errors as they map local operators to local operators while changing the size of their support by at most a constant factor; in the presence of noisy syndrome measurements, our results suggest the possibility of universal fault tolerant quantum computation with constant space overhead and time overhead of O ( d / log ⁡ d ) . For quantum circuits that allow parallel gate operations, this yields the optimal scaling of space-time overhead known to date. 
    more » « less