Fix an integer
We study the dynamics of the unicritical polynomial family [Formula: see text]. The [Formula: see text]-values for which [Formula: see text] has a strictly preperiodic postcritical orbit are called Misiurewicz parameters, and they are the roots of Misiurewicz polynomials. The arithmetic properties of these special parameters have found applications in both arithmetic and complex dynamics. In this paper, we investigate some new such properties. In particular, when [Formula: see text] is a prime power and [Formula: see text] is a Misiurewicz parameter, we prove certain arithmetic relations between the points in the postcritical orbit of [Formula: see text]. We also consider the algebraic integers obtained by evaluating a Misiurewicz polynomial at a different Misiurewicz parameter, and we ask when these algebraic integers are algebraic units. This question naturally arises from some results recently proven by Buff, Epstein, and Koch and by the second author. We propose a conjectural answer to this question, which we prove in many cases.
more » « less- Award ID(s):
- 2101925
- PAR ID:
- 10520447
- Publisher / Repository:
- arxiv.org
- Date Published:
- Journal Name:
- International Journal of Number Theory
- Volume:
- 19
- Issue:
- 06
- ISSN:
- 1793-0421
- Page Range / eLocation ID:
- 1249 to 1267
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract . The parameters$$d\ge 2$$ for which the unicritical polynomial$$c_0\in \overline{\mathbb {Q}}$$ has finite postcritical orbit, also known as$$f_{d,c}(z)=z^d+c\in \mathbb {C}[z]$$ Misiurewicz parameters, play a significant role in complex dynamics. Recent work of Buff, Epstein, and Koch proved the first known cases of a long-standing dynamical conjecture of Milnor using their arithmetic properties, about which relatively little is otherwise known. Continuing our work from a companion paper, we address further arithmetic properties of Misiurewicz parameters, especially the nature of the algebraic integers obtained by evaluating the polynomial defining one such parameter at a different Misiurewicz parameter. In the most challenging such combinations, we describe a connection between such algebraic integers and the multipliers of associated periodic points. As part of our considerations, we also introduce a new class of polynomials we callp -special , which may be of independent number theoretic interest. -
Let [Formula: see text] be an integer and [Formula: see text] be a finite field with [Formula: see text] elements. We prove several results on the distribution in short intervals of polynomials in [Formula: see text] that are not divisible by the [Formula: see text]th power of any non-constant polynomial. Our main result generalizes a recent theorem by Carmon and Entin on the distribution of squarefree polynomials to all [Formula: see text]. We also develop polynomial versions of the classical techniques used to study gaps between [Formula: see text]-free integers in [Formula: see text]. We apply these techniques to obtain analogs in [Formula: see text] of some classical theorems on the distribution of [Formula: see text]-free integers. The latter results complement the main theorem in the case when the degrees of the polynomials are of moderate size.
-
This paper is a sequel to [Monatsh. Math. 194 (2021) 523–554] in which results of that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approximation. Given any integers [Formula: see text] and [Formula: see text], any [Formula: see text], and any homogeneous function [Formula: see text] that satisfies a certain nonsingularity assumption, we obtain a biconditional criterion on the approximating function [Formula: see text] for a generic element [Formula: see text] in the [Formula: see text]-orbit of [Formula: see text] to be (respectively, not to be) [Formula: see text]-approximable at [Formula: see text]: that is, for there to exist infinitely many (respectively, only finitely many) [Formula: see text] such that [Formula: see text] for each [Formula: see text]. In this setting, we also obtain a sufficient condition for uniform approximation. We also consider some examples of [Formula: see text] that do not satisfy our nonsingularity assumptions and prove similar results for these examples. Moreover, one can replace [Formula: see text] above by any closed subgroup of [Formula: see text] that satisfies certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the aforementioned previous paper.more » « less
-
Let [Formula: see text] be a set of positive integers, [Formula: see text] denoting the largest element, so that for any two of the [Formula: see text] subsets the sum of all elements is distinct. Erdős asked whether this implies [Formula: see text] for some universal [Formula: see text]. We prove, slightly extending a result of Elkies, that for any [Formula: see text], [Formula: see text] with equality if and only if all subset sums are [Formula: see text]-separated. This leads to a new proof of the currently best lower bound [Formula: see text]. The main new insight is that having distinct subset sums and [Formula: see text] small requires the random variable [Formula: see text] to be close to Gaussian in a precise sense.
-
Motivated by results about “untangling” closed curves on hyperbolic surfaces, Gupta and Kapovich introduced the primitivity and simplicity index functions for finitely generated free groups, [Formula: see text] and [Formula: see text], where [Formula: see text], and obtained some upper and lower bounds for these functions. In this paper, we study the behavior of the sequence [Formula: see text] as [Formula: see text]. Answering a question from [17], we prove that this sequence is unbounded and that for [Formula: see text], we have [Formula: see text]. By contrast, we show that for all [Formula: see text], one has [Formula: see text]. In addition to topological and group-theoretic arguments, number-theoretic considerations, particularly the use of asymptotic properties of the second Chebyshev function, turn out to play a key role in the proofs.more » « less