Planar magnetic microswimmers are well-suited for in vivo biomedical applications due to their cost-effective mass production through standard photolithography techniques. The precise control of their motion in diverse environments is a critical aspect of their application. This study demonstrates the control of these swimmers individually and as a swarm, exploring navigation through channels and showcasing their functional capabilities for future biomedical settings. We also introduce the capability of microswimmers for surface motion, complementing their traditional fluid-based propulsion and extending their functionality. Our research reveals that microswimmers with varying magnetization directions exhibit unique trajectory patterns, enabling complex swarm tasks. This study further delves into the behavior of these microswimmers in intricate environments, assessing their adaptability and potential for advanced applications. The findings suggest that these microswimmers could be pivotal in areas such as targeted drug delivery and precision medical procedures, marking significant progress in the biomedical and micro-robotic fields and offering new insights into their control and behavior in diverse environments.
more »
« less
Propulsion of Planar V‐Shaped Microswimmers in a Conically Rotating Magnetic Field
Planar magnetic microswimmers bear great potential for in vivo biomedical applications as they can be mass‐produced at minimal costs using standard photolithography techniques. Therefore, it is central to understand how to control their motion. This study examines the propulsion of planar V‐shaped microswimmers in an aqueous solution powered by a conically rotating magnetic field and compares the experimental results with theory. Propulsion is investigated upon altering the cone angle of the driving field. It is shown that a V‐shaped microswimmer magnetized along its symmetry axis exhibits unidirectional in‐sync propulsion with a constant (frequency‐independent) velocity in a limited band of actuation frequencies. It is also demonstrated that the motion of individual and multiple in‐plane magnetized planar microswimmers in a conically rotating field can be efficiently controlled.
more »
« less
- Award ID(s):
- 2123824
- PAR ID:
- 10520941
- Publisher / Repository:
- Wiley-VCH GmbH
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Planar magnetic microswimmers offer substantial potential for in vivo biomedical applications, owing to their efficient mass production via photolithography. In this study, we demonstrate the effective control of these microswimmers using an open-loop approach in environments with minimal external disturbances. We investigate their surface motion characteristics through both theoretical modeling and experimental testing under varying magnetic field strengths and rotation frequencies, identifying regions of stable and unstable motion. Additionally, we analyze how field frequency and strength influence surface motion speed and identify the frequencies that promote stability. Open-loop control of surface motion in fluid environments and swimming in channels is also demonstrated, highlighting the operational flexibility of these microswimmers. We further demonstrate swarm motion for both swimming and surface operations, exhibiting larger-scale coordination. Our findings emphasize their potential for future applications in biomedical engineering and microrobotics, marking a step forward in the development of microscale robotic systems.more » « less
-
Abstract Magnetic achiral planar microswimmers can be massively fabricated at low cost and are envisioned to be useful for in vivo biomedical applications. To understand locomotion in representative in vivo environments, we investigated the swimming performance of achiral planar microswimmers in methylcellulose solutions. We observed that these microswimmers displayed very similar swimming characteristics in methylcellulose solutions as in water. Furthermore, this study indicated that the range of precession angles increased as the concentration of MC solution increased. Last, it was demonstrated that achiral planar microswimmers with similar precession angles exhibited nearly the same dimensionless speeds in different concentrations of the methylcellulose solutions. Upon understanding swimmer kinematics, more effective control over the achiral planar microswimmers can be achieved to perform multiple biomedical tasks in in vivo environments.more » « less
-
Abstract It is demonstrated how the strength of activation for photocatalytic, self‐propelled colloids can be enhanced with a constant, uniform magnetic field. When exposed to ultraviolet light and hydrogen peroxide, the titanium dioxide‐based colloids become actively propelled. Due to the iron oxide core, a uniform field oriented perpendicular to the surface where motion takes place causes the asymmetrically shaped particles to rotate, which consequently leads to an increase in activity. The field‐dependent dynamics of self‐propulsion is quantified, and a qualitative description of how this effect arises is proposed. Since the application of the field is easily reversible, modulating the field on‐and‐off serves as a de facto “switch” that controls particle behavior.more » « less
An official website of the United States government

