To increase the storage capacity of hard disk drives, Heat-Assisted Magnetic Recording (HAMR) takes advantage of laser heating to temporarily reduce the coercivity of recording media, enabling the writing of very small data bits on materials with high thermal stability. One key challenge in implementing HAMR is effective thermal management, which requires reliable determination of the thermal properties of HAMR materials over their range of operating temperature. This work reports the thermal properties of dielectric (amorphous silica, amorphous alumina, and AlN), metallic (gold and copper), and magnetic alloy (NiFe and CoFe) thin films used in HAMR heads from room temperature to 500 K measured with time-domain thermoreflectance. Our results show that the thermal conductivities of amorphous silica and alumina films increase with temperature, following the typical trends for amorphous materials. The polycrystalline AlN film exhibits weak thermal anisotropy, and its in-plane and through-plane thermal conductivities decrease with temperature. The measured thermal conductivities of AlN are significantly lower than that which would be present in single-crystal bulk material, and this is attributed to enhanced phonon-boundary scattering and phonon-defect scattering. The gold, copper, NiFe, and CoFe films show little temperature dependence in their thermal conductivities over the same temperature range. The measured thermal conductivities of gold and copper films are explained by the diffuse electron-boundary scattering using an empirical model. 
                        more » 
                        « less   
                    
                            
                            Supramolecular reinforcement drastically enhances thermal conductivity of interpenetrated covalent organic frameworks
                        
                    
    
            Interpenetration of covalent organic frameworks can lead to drastic enhancements in their thermal conductivities, thus marking a novel regime of materials design combining high porosities with mechanical flexibilities and high thermal conductivities. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2119365
- PAR ID:
- 10521009
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 11
- Issue:
- 35
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 18660 to 18667
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The thermal conductivities of (100) γ-Ga2O3 films deposited on (100) MgAl2O4 substrates with various thicknesses were measured using frequency-domain thermoreflectance. The measured thermal conductivities of γ-Ga2O3 films are lower than the thermal conductivities of (2¯ 01) β-Ga2O3 films of comparable thickness, which suggests that γ-phase inclusions in the doped or alloyed β-phase may affect its thermal conductivity. The thermal conductivity of γ-Ga2O3 increases from 2.3−0.5+0.9 to 3.5±0.7 W/m K for films with thicknesses of 75–404 nm, which demonstrates a prominent size effect on thermal conductivity. The thermal conductivity of γ-Ga2O3 also shows a slight increase as temperature increases from 293 to 400 K. This increase in thermal conductivity occurs when defect and boundary scattering suppress signatures of temperature-dependent Umklapp scattering. γ-Ga2O3 has a cation-defective spinel structure with at least two gallium vacancies in every unit cell, which are the likely source of defect scattering.more » « less
- 
            Abstract Tailor‐made materials featuring large tunability in their thermal transport properties are highly sought‐after for diverse applications. However, achieving `user‐defined’ thermal transport in a single class of material system with tunability across a wide range of thermal conductivity values requires a thorough understanding of the structure‐property relationships, which has proven to be challenging. Herein, large‐scale computational screening of covalent organic frameworks (COFs) for thermal conductivity is performed, providing a comprehensive understanding of their structure‐property relationships by leveraging systematic atomistic simulations of 10,750 COFs with 651 distinct organic linkers. Through the data‐driven approach, it is shown that by strategic modulation of their chemical and structural features, the thermal conductivity can be tuned from ultralow (≈0.02 W m−1K−1) to exceptionally high (≈50 W m−1K−1) values. It is revealed that achieving high thermal conductivity in COFs requires their assembly through carbon–carbon linkages with densities greater than 500 kg m−3, nominal void fractions (in the range of ≈0.6–0.9) and highly aligned polymeric chains along the heat flow direction. Following these criteria, it is shown that these flexible polymeric materials can possess exceptionally high thermal conductivities, on par with several fully dense inorganic materials. As such, the work reveals that COFs mark a new regime of materials design that combines high thermal conductivities with low densities.more » « less
- 
            Thermal interface material (TIM) that exists in a liquid state at the service temperature enables efficient heat transfer across two adjacent surfaces in electronic applications. In this work, the thermal conductivities of different phase regions in the Ga-In system at various compositions and temperatures are measured for the first time. A modified comparative cut bar technique is used for the measurement of the thermal conductivities of GaxIn1−x (x = 0, 0.1, 0.214, 0.3, and 0.9) alloys at 40, 60, 80, and 100 °C, the temperatures commonly encountered in consumer electronics. The thermal conductivity of liquid and semi-liquid (liquid + β) Ga-In alloys are higher than most of the TIM’s currently used in consumer electronics. These measured quantities, along with the available experimental data from literature, served as input for the thermal conductivity parameter optimization using the CALPHAD (calculation of phase diagrams) method for pure elements, solution phase, and two-phase region. A set of self-consistent parameters for the description of the thermal conductivity of the Ga-In system is obtained. There is good agreement between the measured and calculated thermal conductivities for all of the phases. Due to their ease of manufacturing and high thermal conductivity, liquid/semi-liquid Ga-In alloys have significant potential for TIM in consumer electronics.more » « less
- 
            Efficient heat dissipation in batteries is important for thermal management against thermal runaway and chemical instability at elevated temperatures. Nevertheless, thermal transport processes in battery materials have not been well understood especially considering their complicated microstructures. In this study, lattice thermal transport in lithium cobalt oxide (LiCoO 2 ), a popular cathode material for lithium ion batteries, is investigated via molecular dynamics-based approaches and thermal resistance models. A LiCoO 2 single-crystal is shown to have thermal conductivities in the order of 100 W m −1 K −1 with strong anisotropy, temperature dependence, and size effects. By comparison, polycrystalline LiCoO 2 is more isotropic with much lower thermal conductivities. This difference is caused by random grain orientations, the thermal resistance of grain boundaries, and size-dependent intra-grain thermal conductivities that are unique to polycrystals. The grain boundary thermal conductance is calculated to be in the range of 7.16–25.21 GW m −2 K −1 . The size effects of the intra-grain thermal conductivities are described by two empirical equations. Considering all of these effects, two thermal resistance models are developed to predict the thermal conductivity of polycrystalline LiCoO 2 . The two models predict a consistent thermal conductivity–grain size relationship that agrees well with molecular dynamics simulation results. The insights revealed by this study may facilitate future efforts on battery materials design for improved thermal management.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    