skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2118745

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Benchmark and system parameters often have a significant impact on performance evaluation, which raises a long-lasting question about which settings we should use. This paper studies the feasibility and benefits of extensive evaluation. A full extensive evaluation, which tests all possible settings, is usually too expensive. This work investigates whether it is possible to sample a subset of the settings and, upon them, generate observations that match those from a full extensive evaluation. Towards this goal, we have explored the incremental sampling approach, which starts by measuring a small subset of random settings, builds a prediction model on these samples using the popular ANOVA approach, adds more samples if the model is not accurate enough, and terminates otherwise. To summarize our findings: 1) Enhancing a research prototype to support extensive evaluation mostly involves changing hard-coded configurations, which does not take much effort. 2) Some systems are highly predictable, which means that they can achieve accurate predictions with a low sampling rate, but some systems are less predictable. 3) We have not found a method that can consistently outperform random sampling + ANOVA. Based on these findings, we provide recommendations to improve artifact predictability and strategies for selecting parameter values during evaluation. 
    more » « less
  2. Distributed data stores typically provide weak isolation levels, which are efficient but can lead to unserializable behaviors, which are hard for programmers to understand and often result in errors. This paper presents the first dynamic predictive analysis for data store applications under weak isolation levels, called IsoPredict. Given an observed serializable execution of a data store application, IsoPredict generates and solves SMT constraints to find an unserializable execution that is a feasible execution of the application. IsoPredict introduces novel techniques to handle divergent application behavior; to solve mutually recursive sets of constraints; and to balance coverage, precision, and performance. An evaluation shows IsoPredict finds unserializable behaviors in four data store benchmarks, and that more than 99% of its predicted executions are feasible. 
    more » « less
  3. The success of AlphaGo Zero shows that a computer can learn to play a complicated board game without relying on the knowledge from human players. We observe that designing a distributed protocol is similar to playing board games to some extent: when determining the next action to take, they both want to ensure they can win even when a smart opponent tries to drive the game/protocol to the worst case. In this work, we explore whether we can apply similar techniques to learn a distributed protocol with zero knowledge. Towards this goal, we model the process in a distributed protocol as a state machine, and further rely on model checking to validate the correctness of the learned state machine. With this approach, we successfully learned a correct atomic commit protocol with three processes, and upon that, we further discuss future work. 
    more » « less
  4. User-associated contents play an increasingly important role in modern network applications. With growing deployments of edge servers, the capacity of content storage in edge clusters significantly increases, which provides great potential to satisfy content requests with much shorter latency. However, the large number of contents also causes the difficulty of searching contents on edge servers in different locations because indexing contents costs huge DRAM on each edge server. In this work, we explore the opportunity of efficiently indexing user-associated contents and propose a scalable content-sharing mechanism for edge servers, called EdgeCut, that significantly reduces content access latency by allowing many edge servers to share their cached contents. We design a compact and dynamic data structure called Ludo Locator that returns the IP address of the edge server that stores the requested user-associated content. We have implemented a prototype of EdgeCut in a real network environment running in a public geo-distributed cloud. The experiment results show that EdgeCut reduces content access latency by up to 50% and reduces cloud traffic by up to 50% compared to existing solutions. The memory cost is less than 50MB for 10 million mobile users. The simulations using real network latency data show EdgeCut’s advantages over existing solutions on a large scale. 
    more » « less